GNSS World of China

Volume 48 Issue 4
Sep.  2023
Turn off MathJax
Article Contents
LI Yifan, DU Shitong, LI Shuang, HUANG Lu, YANG Zihan, CHEN Chong. Laser odometry algorithm based on point cloud segmentation[J]. GNSS World of China, 2023, 48(4): 37-43. doi: 10.12265/j.gnss.2023066
Citation: LI Yifan, DU Shitong, LI Shuang, HUANG Lu, YANG Zihan, CHEN Chong. Laser odometry algorithm based on point cloud segmentation[J]. GNSS World of China, 2023, 48(4): 37-43. doi: 10.12265/j.gnss.2023066

Laser odometry algorithm based on point cloud segmentation

doi: 10.12265/j.gnss.2023066
  • Received Date: 2023-03-30
    Available Online: 2023-08-22
  • In this paper, we propose a feature extraction and matching method based on point cloud segmentation to address the problems of information redundancy and interference of discrete points in laser odometry algorithms. By utilizing the horizontal rotation scanning characteristics of mechanical LiDAR, the point cloud data is segmented and clustered by scan lines, and edge points are extracted as line features and surface points are extracted as surface features. Compared to traditional feature extraction methods, our algorithm can effectively extract feature points with less distinctiveness and eliminate discrete points. The algorithm not only reduces the computational complexity but also improves the accuracy and robustness of positioning, which has great application prospects in robot navigation tasks. The performance of the algorithm is validated through computer simulation and achieved good experimental results.

     

  • loading
  • [1]
    王朋, 郝伟龙, 倪翠, 等. 视觉SLAM方法综述[J/OL]. (2022-12-26)[2023-02-21]. 北京航空航天大学学报, 2023: 1-9. https://bhxb.buaa.edu.cn/bhzk/cn/article/doi/10.13700/j.bh.1001-5965.2022.0376
    [2]
    梁双, 倪晓昌, 董娇玲, 等. 基于激光雷达的SLAM算法综述[J]. 信息与电脑(理论版), 2022, 34(3): 59-61.
    [3]
    HORAUD R, HANSARD M, EVANGELIDIS G, et al. An overview of depth cameras and range scanners based on time-of-flight technologies[J]. Machine vision & applications, 2016, 27(7): 1005-1020. DOI: 10.1007/s00138-016-0784-4
    [4]
    ELHOUSNI M, HUANG X M. A survey on 3D LiDAR localization for autonomous vehicles[C]//IEEE Intelligent Vehicles Symposium (IV), 2020. DOI: 10.1109/IV47402.2020.9304812
    [5]
    周治国, 曹江微, 邸顺帆. 3D激光雷达SLAM算法综述[J]. 仪器仪表学报, 2021, 42(9): 13-27. DOI: 10.19650/j.cnki.cjsi.J2107897
    [6]
    ZHANG J, SINGH S. Low-drift and real-time Lidar odometry and mapping[J]. Autonomous robots, 2017, 41(2): 401-416. DOI: 10.1007/s10514-016-9548-2
    [7]
    HORACHE S, DESCHAUD J-E, GOULETTE F. 3D point cloud registration with multi-scale architecture and unsupervised transfer learning[C]//International Conference on 3D Vision (3DV), 2021. DOI: 10.1109/3DV53792.2021.00142
    [8]
    SERAFIN J, OLSON E, GRISETTI G. Fast and robust 3D feature extraction from sparse point clouds[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016. DOI: 10.1109/IROS.2016.7759604
    [9]
    ABEDINI A, HAHN M, SAMADZADEGAN F. An investigation into the registration of LIDAR intensity data and aerial images using the SIFT approach[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science Conference, 2008: 169-175.
    [10]
    ARSHAD S, KIM G-W. Role of deep learning in loop closure detection for visual and lidar slam: a survey[J]. Sensors, 2021, 21(4): 1243. DOI: 10.3390/s21041243
    [11]
    方国润. 三维点云分割研究综述[J]. 计量与测试技术, 2021, 48(7): 52-55. DOI: 10.15988/j.cnki.1004-6941.2021.7.016
    [12]
    BOGOSLAVSKI I, STACHNISS C. Fast range image-based segmentation of sparse 3D laser scans for online operation[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016. DOI: 10.1109/IROS.2016.7759050
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (189) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return