GNSS World of China

Volume 48 Issue 4
Sep.  2023
Turn off MathJax
Article Contents
MAO Yue, SUN Zhongmiao, JIA Xiaolin, SONG Xiaoyong, JIANG Qingxian. Analyzing the current situation of quantum navigation technology system[J]. GNSS World of China, 2023, 48(4): 19-23. doi: 10.12265/j.gnss.2023034
Citation: MAO Yue, SUN Zhongmiao, JIA Xiaolin, SONG Xiaoyong, JIANG Qingxian. Analyzing the current situation of quantum navigation technology system[J]. GNSS World of China, 2023, 48(4): 19-23. doi: 10.12265/j.gnss.2023034

Analyzing the current situation of quantum navigation technology system

doi: 10.12265/j.gnss.2023034
  • Received Date: 2023-03-02
    Available Online: 2023-08-22
  • With the continuous development of quantum information science and technology, quantum navigation equipment has attracted extensive attention at home and abroad due to its higher measurement accuracy, smaller equipm ent volume and wider application areas. It has gradually become an emerging technology to improve the core capability of the next generation of position and navigation equipment and may be put into use before 2030, and become an core realm to lead the following development of position and navigation. This paper combs the technical system, key development directions and research status in the field of quantum navigation, and gives follow-up development suggestions, which plays a promoting role in the development of quantum navigation technology.

     

  • loading
  • [1]
    严吉中, 李攀, 刘元正. 原子陀螺基本概念及发展趋势分析[J]. 压电与声光, 2015, 37(5): 810-816.
    [2]
    邓建辉, 郑孝天. 冷原子干涉陀螺仪发展综述[J]. 光学与光电技术, 2014, 12(5): 94-98.
    [3]
    BAHDE T. Quantum positioning system[C]//The 36th Annual Precise Time and Time Interval (PTTI) Meeting, 2005: 423-427.
    [4]
    王谨, 詹明生, 李润兵. 冷原子干涉仪及空间应用[J]. 物理, 2008, 37(9): 652-657.
    [5]
    GIOVANNETTI V, LIOYD S, MACCONE L. Quantum-enhanced positioning and clock synchronization [J]. Nature, 2001(412): 417- 419. DOI: 10.1038/35086525
    [6]
    BAHDER T B, GOLDING W M. Clock synchronization based on second order quantum coherence of entangled photons [J]. Quantum communication, measurement and computing, 2004, 734(1): 395-398. DOI: 10.1063/1.1834461
    [7]
    朱俊. 量子关联定位关键技术的研究[D]. 上海: 上海交通大学, 2012.
    [8]
    杨春燕, 吴德伟, 余永林, 等. 干涉式量子定位系统最优星座分布研究[J]. 测绘通报, 2009, 9(12): 1-6.
    [9]
    王志刚, 邓逸凡, 杨绚. 近地航天器量子导航定位卡尔曼滤波算法研究[J]. 飞行力学, 2016, 34(5): 69-72.
    [10]
    许方星. 简析量子定位技术及应用前景[J]. 科技资讯, 2014, 13(22): 7-9.
    [11]
    周宏远. 航天测控网量子密钥分配技术研究[D]. 沈阳: 沈阳航空航天大学, 2010.
    [12]
    万双爱, 孙晓光, 郑辛, 等. 核磁共振陀螺技术发展展望[J]. 导航定位与授时, 2017, 4(1): 7-13.
    [13]
    陈颖, 刘占超, 刘刚. 核磁共振陀螺仪研究进展[J]. 控制理论与应用, 2019, 36(7): 1017-1023.
    [14]
    蒋军彪, 王晓章, 谭鹏立. 原子陀螺及其在智能弹药中的应用前景分析[J]. 弹箭与制导学报, 2016, 36(6): 44-48.
    [15]
    刘院省, 阚宝玺, 石猛, 等. 原子陀螺仪技术研究进展[C]//第四届航天电子战略研究论坛论文集, 2018.
    [16]
    吴彬, 王肖隆, 王河林, 等. 冷原子干涉型重力仪的发展现状与趋势[J]. 导航与控制, 2015, 14(2): 2-9.
    [17]
    邵哲明, 尹业宏. 原子干涉技术在惯性导航领域的进展[J]. 光学与光电技术, 2017, 15(4): 90-94.
    [18]
    予菲, 小型化原子干涉仪的研究及其在精密测量中的应用[D]. 杭州: 浙江大学, 2018.
    [19]
    张国万, 李嘉华. 冷原子干涉技术原理及其在深空探测中的应用展望[J]. 深空探测学报, 2017, 4(1): 14-19.
    [20]
    谭立龙, 张彦涛, 王鹏, 等. 原子干涉重力仪测量原理与发展现状[J]. 地球物理学进展, 2010(4): 1310-1316.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (573) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return