GNSS World of China

Volume 48 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
YANG Xianci, QIAO Shubo, XIAO Guorui, JIA Xiaoxue, PENG Huadong, LI Songwei. GNSS/INS loose combined navigation based on factor graph optimization PPP[J]. GNSS World of China, 2023, 48(3): 85-92. doi: 10.12265/j.gnss.2023027
Citation: YANG Xianci, QIAO Shubo, XIAO Guorui, JIA Xiaoxue, PENG Huadong, LI Songwei. GNSS/INS loose combined navigation based on factor graph optimization PPP[J]. GNSS World of China, 2023, 48(3): 85-92. doi: 10.12265/j.gnss.2023027

GNSS/INS loose combined navigation based on factor graph optimization PPP

doi: 10.12265/j.gnss.2023027
  • Received Date: 2023-05-06
    Available Online: 2023-06-21
  • Aiming at the problem of global navigation satellite system signal loss caused by building occlusion, multipath effect and insufficient satellite visibility, a precise point positioning (PPP) algorithm based on factor graph optimization is proposed for the integrated positioning of GNSS and INS. First, with reference to the classical PPP dual-frequency lonosphere-free model, the pseudo-range and carrier factors are constructed, and the nonlinear least-squares problem is solved according to the nonlinear optimization theory. Then, the optimized PPP location information is used as the GNSS PPP factor, and the refined pre-integration factor considering the rotation of the earth is constructed into the GNSS/INS loose combination factor graph frame, to realize the nonlinear optimization of integrated navigation information. The results of on-board real measurement show that the positioning accuracy of the proposed algorithm is 37.09%, 28.79% and 64.59% higher than that of the extended Kalman filter algorithm in the north, east, and down directions respectively for PPP; For GNSS/INS integrated navigation, the positioning accuracy of the algorithm is 49.08%, 41.22% and 71.86% higher than that of the extended Kalman filter algorithm in three directions.

     

  • loading
  • [1]
    金东阳, 刘党辉, 夏长峰. GNSS/INS深组合导航技术研究进展[J]. 全球定位系统, 2014, 39(3): 24-28, 32.
    [2]
    高周正. 多模GNSS PPP/INS组合系统算法与应用研究[D]. 武汉: 武汉大学, 2016.
    [3]
    王富, 韩保民, 胡亮亮, 等. 城市复杂环境下GNSS/INS组合导航算法研究[J]. 大地测量与地球动力学, 2022, 42(1): 15-20.
    [4]
    蒋晨. GNSS/INS组合导航滤波算法及可靠性分析[J]. 测绘学报, 2020, 49(10): 1376.
    [5]
    周雅婧, 曾庆化, 刘建业,等. 因子图发展及其在定位与导航的应用技术[J]. 全球定位系统, 2020, 45(1): 1-11.
    [6]
    韩勇强, 于潇颖, 纪泽源, 等. 面向城市复杂环境的GNSS/INS高精度图优化算法[J]. 中国惯性技术学报, 2022, 30(5): 582-588.
    [7]
    闵涛, 罗小勇, 高峰, 等. 基于位姿图优化的MEMS-INS/GNSS行人融合定位方法[J]. 中国惯性技术学报, 2021, 29(1): 40-47.
    [8]
    王运明, 程相, 李卫东, 等. 基于因子图的BDS/IMU列车定位信息融合模型[J]. 铁道科学与工程学报, 2023(3): 1077-1084.
    [9]
    WEN W S, PFEIFER T, BAI X W, et al. It is time for factor graph optimization for GNSS/INS integration: comparison between FGO and EKF[C]// International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), 2019.
    [10]
    TANG H L, NIU X J, ZHANG T S, et al. Exploring the accuracy potential of IMU preintegration in factor graph pptimization[J]. arXiv, 2021. DOI: 10.48550/arXiv.210903010
    [11]
    TA D-N, KOBILAROV M, DELLAERT F. A factor graph approach to estimation and model predictive control on unmanned aerial vehicles[C]//International Conference on Unmanned Aircraft Systems (ICUAS), 2014.
    [12]
    LOELIGER H-A, DAUWELS J, HU J, et al. The factor graph approach to model-based signal processing[J]. Proceedings of the IEEE, 2007, 95(6): 1295-1322. DOI: 10.1109/JPROC.2007.896497
    [13]
    杨元喜, 郭海荣, 何海波. 卫星导航定位原理[M]. 北京: 国防工业出版社, 2021.
    [14]
    KOUBA J, HEROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883
    [15]
    贾晓雪, 赵冬青, 肖国锐, 等. 基于精化预积分的GNSS/IMU/视觉多源融合定位方法[J/OL]. (2022-09-25)[2023-03-15]. 北京航空航天大学学报: 1-10. https://www.cnki.com.cn/Article/CJFDTotal-BJHK20220925002.htm
    [16]
    KAESS M, JOHANNSSON H, ROBERTS R, et al. iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering[C]// IEEE International Conference on Robotics and Automation, 2011.
    [17]
    潘军道, 韦照川, 杨柯. 基于RTKLIB的精密单点定位及结果分析[J]. 全球定位系统, 2017, 42(1): 95-99.
    [18]
    DELLAERT F, KAESS M. Factor graphs for robot perception[J]. Foundations & trends in robotics, 2017: 154. DOI: 10.1561/2300000043
    [19]
    王炳清. 基于高精度惯性器件的因子图组合导航方法研究[D]. 南京: 南京航空航天大学, 2021.
    [20]
    白师宇, 赖际舟, 吕品等. 基于IMU/ODO预积分的多传感器即插即用因子图融合方法[J]. 中国惯性技术学报, 2020, 28(5): 624-628,637.
    [21]
    王晨曦. 基于IMU与单目视觉融合的位姿估计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [22]
    严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (821) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return