GNSS World of China

Volume 48 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
YUAN Liangxiong, WANG Hao, SHEN Zhiheng. Research on GNSS RTK positioning performance of smart phone based on extended antenna[J]. GNSS World of China, 2023, 48(3): 77-84. doi: 10.12265/j.gnss.2023024
Citation: YUAN Liangxiong, WANG Hao, SHEN Zhiheng. Research on GNSS RTK positioning performance of smart phone based on extended antenna[J]. GNSS World of China, 2023, 48(3): 77-84. doi: 10.12265/j.gnss.2023024

Research on GNSS RTK positioning performance of smart phone based on extended antenna

doi: 10.12265/j.gnss.2023024
  • Received Date: 2023-02-16
    Available Online: 2023-07-21
  • The observation data quality of Mi8 smartphone with external low cost spiral antenna is studied, and the analysis and evaluation are carried out from the aspects of carrier to noise ratio (SNR), pseudo-distance residual, phase residual, etc. The results show that the carrier to noise ratio of original Global Navigation System (GNSS) observation value of Mi8 smartphone with external antenna is about 10 dB-Hz higher than that of mobile phone with internal antenna. And the carrier to noise ratio level is almost the same as that of the measured receiver. Pseudo range residual within 5 m, phase accuracy within 3 m. Different from the mobile phone with internal antenna, the pseudo distance residual of the mobile phone with external antenna has strong correlation with height angle and carrier to noise ratio. On this basis, two kinds of weighting models based on height angle and carrier to noise ratio are given, and real-time dynamic (RTK) positioning performance tests are carried out in static and dynamic environments based on the extended antenna of Mi8 mobile phone. The experimental results show that the RTK positioning accuracy of Mi8 mobile phone with external antenna can reach centimeter level in both static and dynamic environments. Moreover, using a random model based on carrier to noise ratio weighting has higher positioning accuracy in dynamic scenarios compared to a random model with height angle weighting. Specifically, it has an accuracy improvement of about 16% and 50% in the horizontal and vertical directions, respectively.

     

  • loading
  • [1]
    WANG L, L Z S, ZHAO J J, et al. Smart device-supported BDS/GNSS real-time kinematic positioning for sub-meter-level accuracy in urban location-based services[J]. Sensors, 2016, 16(12): 2201. DOI: 10.3390/s16122201
    [2]
    王怡欣, 刘晖, 钱闯, 等. 一种基于智能手机的实时高精度定位系统开发与车载应用测试[J]. 测绘通报, 2022(10): 56-61.
    [3]
    PESYNA K M, HUMPHREYS T E, HEATH R W, et al. Exploiting antenna motion for faster initialization of centimeter-accurate GNSS positioning with low-cost antennas[J]. IEEE transactions on aerospace and electronic systems, 2017, 53(4): 1597-1613. DOI: 10.1109/TAES.2017.2665221
    [4]
    ZHANG X H, XIA L T, ZHU F, et al. Quality assessment of GNSS observantions from an Android N smartphone and positioning performance analysis using time-differenced filtering approach[J]. GPS solutions, 2018, 22(3): 1-11. DOI: 10.1007/s10291-018-0736-8
    [5]
    LI G C, GENG J H. Characteristics of raw multi-GNSS measurement error from Google Android smart devices[J]. GPS solutions, 2019, 23(3): 1-16. DOI: 10.1007/s10291-019-0885-4
    [6]
    冷宏宇, 秘金钟, 徐彦田, 等. 智能手机终端RTK定位性能分析[J]. 测绘科学, 2020, 45(12): 15-21.
    [7]
    GENG J H, LI G C. On the feasibility of resolving Android GNSS carrier-phase ambiguities[J]. Journal of geodesy, 2019, 93(12): 2621-2635. DOI: 10.1007/s00190-019-01323-0
    [8]
    李敏, 张会超, 李文文, 等. 华为P40手机北斗三频观测数据质量及噪声分析[J]. 大地测量与地球动力学, 2021, 41(7): 661-665.
    [9]
    ZHANG X H, WU M K, LIU W K, et al. Initial assessment of the COMPASS/BeiDou-3: new-generation navigation signals[J]. Journal of geodesy, 2017, 91(1): 1125-1240. DOI: 10.1007/s00190-017-1020-3
    [10]
    刘万科, 史翔, 朱锋, 等. 谷歌Nexus 9智能终端原始GNSS观测值的质量分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1749-1756.
    [11]
    WANG L, LI Z S, WANG N B, et al. Real-time GNSS precise point positioning for low-cost smart devices[J]. GPS solutions, 2021, 25(2). DOI: 10.1007/s10291-021-01106-1
    [12]
    张小红, 丁乐乐. 北斗二代观测值质量分析及随机模型精化[J]. 武汉大学学报(信息科学版), 2013, 38(7): 832-836.
    [13]
    王天文. 智能手机GNSS标准定位性能与精度分析[J]. 城市勘测, 2021(1): 120-124.
    [14]
    崔均烨, 宁一鹏, 米宏志, 等. 双频Android手机GPS/BDS伪距单点定位增强方法与性能评估[J]. 导航定位与授时, 2022, 9(1): 126-133.
    [15]
    PAZIEWSKI J, FORTUNATO M, MAZZONI A, et al. An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results[J]. Measurement, 2021(175): 109162. DOI: 10.1016/j.measurement.2021.109162
    [16]
    ZHU F, TAO X L, LIU W K, et al. Walker: continuous and precise navigation by fusing GNSS and MEMS in smartphone chipsets for pedestrians[J]. Remote sensing, 2019, 11(2): 139. DOI: 10.3390/rs11020139
    [17]
    舒宝, 义琛, 王利, 等. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析[J]. 大地测量与地球动力学, 2022, 42(12): 1222-1226.
    [18]
    PAZIEWSKI J, SIERADZKI R, BARYLA R. Signal characterization and assessment of code GNSS positioning with low-power consumption smartphones[J]. GPS solutions, 2019, 23(4): 1-12. DOI: 10.1007/s10291-019-0892-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (390) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return