GNSS World of China

Volume 48 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
FENG Jian, YANG Zaozao, XU Ying, CHEN Hao. Land subsidence monitoring in coal mining collapse area of Urumqi[J]. GNSS World of China, 2023, 48(3): 44-51. doi: 10.12265/j.gnss.2023020
Citation: FENG Jian, YANG Zaozao, XU Ying, CHEN Hao. Land subsidence monitoring in coal mining collapse area of Urumqi[J]. GNSS World of China, 2023, 48(3): 44-51. doi: 10.12265/j.gnss.2023020

Land subsidence monitoring in coal mining collapse area of Urumqi

doi: 10.12265/j.gnss.2023020
  • Received Date: 2023-02-13
    Available Online: 2023-06-21
  • The Jurassic coal-bearing layers in Urumqi intersect the major metropolitan region in a near east-west direction, with the geological features of many coal-bearing seams and massive and virtually vertical single coal seams. For decades, coal resource mining has harmed Urumqi’s urban environment, and the ensuing subsidence zones endanger the productivity and lives of the surrounding population, as well as severely limiting the city’s development of the cities and the development and usage of land resources. The main data source in this paper is Sentinel-1A data from the Liudaowan coal mine and Reed Huliang coal mine, which straddle Shuimoegou and Midong districts in Urumqi, and SBAS-InSAR technique is used to monitor the surface subsidence phenomena of historical abandoned coal mines, existing mined coal mines, and surrounding residential areas in the study area from June 2018 to the end of June 2022. The SBAS-InSAR technology is used to process SAR data, obtain surface time series deformation results in the study area, and generate annual average rate and cumulative deformation variables after geocoding, and it is discovered that the extent of subsidence funnels in several mining areas expanded and the cumulative subsidence in the center of the subsidence funnels exceeded −150 mm. The total sinking of GPS and SBAS findings is determined after comparison with the results of the GPS. The trend is stable, and the root mean square error is less than 2-3 mm.

     

  • loading
  • [1]
    张香凝, 贺黎明, 刘翠芝, 等. 基于SBAS-InSAR技术的煤矿开采沉陷监测与分析[J]. 遥感技术与应用, 2022, 37(4): 1021-1028.
    [2]
    FRYKSTEN J, NILFOUROUSHAN F. Analysis of clay-induced land subsidence in uppsala city using Sentinel-1 SAR data and precise leveling[J]. Remote sensing, 2019, 11(23): 2764. DOI: 10.3390/rs11232764
    [3]
    许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10): 2020-2033.
    [4]
    王洲. GNSS与InSAR地面形变监测深度融合[D]. 兰州: 兰州交通大学, 2021.
    [5]
    窦新玉, 薛祎明, 郑文. GNSS遥感研究进展与思考[C]//中国卫星导航系统管理办公室学术交流中心. 第十二届中国卫星导航年会论文集——S01 卫星导航行业应用, 2021.
    [6]
    许强, 蒲川豪, 赵宽耀, 等. 延安新区地面沉降时空演化特征时序InSAR监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(7): 957-969.
    [7]
    朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733.
    [8]
    BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline deferential SAR interferograms[J]. IEEE transactions on geoscience and remote sensing, 2002, 40: 2375-2383. DOI: 10.1109/TGRS.2002.803792.
    [9]
    HOOPER A, ZEBKER K,SEGALL P,et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatters[J]. Geophysical research letters, 2004, 31(4): 1-5. DOI: 10.1029/2004GL021737
    [10]
    HOOPER A, SEGALL P,ZEBKER H,et al. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of geophysical research: solid earth, 2007(112). DOI: 10.1029/2006JB004763
    [11]
    王润泽, 费敏, 梁世川, 等. 基于SBAS-InSAR技术监测西安市地表形变特征[J]. 测绘通报, 2023: 173-178.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(2)

    Article Metrics

    Article views (357) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return