GNSS World of China

Volume 48 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
WANG Peiyuan, TU Rui, HAN Junqiang, ZUO Hang, TAO Linlin, FANG Jing. Development of a real-time deformation monitoring system with integrated GNSS and accelerometer[J]. GNSS World of China, 2023, 48(3): 120-126. doi: 10.12265/j.gnss.2023012
Citation: WANG Peiyuan, TU Rui, HAN Junqiang, ZUO Hang, TAO Linlin, FANG Jing. Development of a real-time deformation monitoring system with integrated GNSS and accelerometer[J]. GNSS World of China, 2023, 48(3): 120-126. doi: 10.12265/j.gnss.2023012

Development of a real-time deformation monitoring system with integrated GNSS and accelerometer

doi: 10.12265/j.gnss.2023012
  • Received Date: 2023-02-07
    Available Online: 2023-06-14
  • This paper designs an STM32 microcontroller based Global Navigation Satellite System (GNSS) and accelerometer data acquisition device that enables real-time deformation monitoring applications. The STM32F103ZET6 is used as the main control chip, and also the GNSS board and accelerometer are used to acquire data, and the data are transmitted to the server through the 4G module. The data are read from the server and the Kalman filter algorithm is used to fuse GNSS data with accelerometer data so that real-time deformation monitoring can be achieved and verified by static experiments. The results show that the baseline drift of the accelerometer can be automatically corrected and the standard deviation of displacement (STD) is better than 1.114 cm in all three directions after fusion; the STD of velocity is better than 0.072 cm/s; and the STD of acceleration is better than 0.485 cm/s2 after correction of baseline drift.

     

  • loading
  • [1]
    WEBER E, CONVERTITO V, IANNACCONE G, et al. An advanced seismic network in the southern apennines (Italy) for seismicity investigations and experimentation with earthquake early warning[J]. Seismological research letters, 2007, 78(6): 622-634. DOI: 10.1785/gssrl.78.6.622
    [2]
    ZOLLO A, LANNACCONE G, LANCIERI M, et al. Earthquake early warning system in southern Italy: methodologies and performance evaluation[J]. Geophysical research letters, 2009, 36(5): L00B07. DOI: 10.1029/2008gl036689
    [3]
    CROWELL B W, BOCK Y, SQUIBB M B. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks[J]. Seismological research letters, 2009, 80(5): 772-782. DOI: 10.1785/gssrl.80.5.772
    [4]
    GENRICH J F, BOCK Y. Instantaneous geodetic positioning with 10-50 Hz GPS measurements: noise characteristics and implications for monitoring networks[J]. Journal of geophysical research, 2006, 111(B3): B03403. DOI: 10.1029/2005jb003617
    [5]
    LARSON K M, BILICH A, AXELRAD P. Improving the precision of high-rate GPS[J]. Journal of geophysical research, 2007, 112(B5): B05422. DOI: 10.1029/2006jb004367
    [6]
    IWAN W D, MOSER M A, PENG C Y. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bulletin of the seismological society of America, 1985, 75(5): 1225-1246. DOI: 10.1007/bf01449758
    [7]
    BOORE D M. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bulletin of the seismological society of America, 2001, 91(5): 1199-1211. DOI: 10.1785/0120000703
    [8]
    WU Y M, WU C F. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. Journal of seismology, 2007, 11(2): 159-170. DOI: 10.1007/s10950-006-9043-x
    [9]
    WANG R, SCHURR B, MILKEREIT C, et al. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bulletin of the seismological society of America, 2011, 101(5): 2029-2044. DOI: 10.1785/0120110039
    [10]
    EMORE G L, HAASE J S, CHOI K, et al. Recovering seismic displacements through combined use of 1-Hz GPS and strong-motion accelerometers[J]. Bulletin of the seismological society of America, 2007, 97(2): 357-378. DOI: 10.1785/0120060153
    [11]
    SMYTH A, WU M. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring[J]. Mechanical systems and signal processing, 2007, 21(2): 706-723. DOI: 10.1016/j.ymssp.2006.03.005
    [12]
    BOCK Y, MELGAR D, CROWELL B W. Real-time strong-motion broadband displacements from collocated GPS and accelerometers[J]. Bulletin of the seismological aociety of America, 2011, 101(6): 2904-2925. DOI: 10.1785/0120110007
    [13]
    TU R, LIU J H, LU C X, et al. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring[J]. Geophysical journal international, 2017, 209(3): 1408-1417. DOI: 10.1093/gji/ggx099
    [14]
    SHU Y M, FANG R X, GENG J H, et al. Broadband velocities and displacements from integrated GPS and accelerometer data for high-rate seismogeodesy[J]. Geophysical research letters, 2018, 45(17): 8939-8948. DOI: 10.1029/2018gl079425
    [15]
    GENG J H, BOCK Y, MELGAR D, et al. A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 brawley seismic swarm: implications for earthquake early warning[J]. Geochemistry, geophysics, geosystems, 2013, 14(7): 2124-2142. DOI: 10.1002/ggge.20139
    [16]
    GENG J H, MELGAR D, BOCK Y, et al. Recovering coseismic point ground tilts from collocated high-rate GPS and accelerometers[J]. Geophysical research letters, 2013, 40(19): 5095-5100. DOI: 10.1002/grl.51001
    [17]
    TU R, GE M R, WANG R J, et al. A new algorithm for tight integration of real-time GPS and strong-motion records, demonstrated on simulated, experimental, and real seismic data[J]. Journal of seismology, 2014, 18(1): 151-161. DOI: 10.1007/s10950-013-9408-x
    [18]
    TU R, CHEN K J. Tightly integrated processing of high-rate GPS and accelerometer observations by real-time estimation of transient baseline shifts[J]. The journal of navigation, 2014, 67(5): 869-880. DOI: 10.1017/S0373463314000150
    [19]
    TU R, LIU J, ZHANG R, et al. Real-time kinematic positioning algorithm with GNSS and high-frequency accelerometer observations for broadband signals[J]. Measurement science and technology, 2019, 31(3): 035007. DOI: 10.1088/1361-6501/ab5d87
    [20]
    PASSMORE P R, JACKSON M, ZIMAKOV L G, et al. Integrated seismogeodetic systsem with high-resolution, real-time GNSS and accelerometer observation for earthquake early warning application[C]// American Geophysical Union, Fall Meeting, 2014.
    [21]
    曾燃, 耿江辉, 辛绍铭, 等. SMAG2000: 一体化GNSS强震仪及其地震监测性能分析[J]. 武汉大学学报(信息科学版): 2023, 48(3): 443-452.
    [22]
    XIN S M, GENG J H, ZENG R, et al. In-situ real-time seismogeodesy by integrating multi-GNSS and accelerometers[J]. Measurement, 2021, 179(5). DOI: 10.1016/j.measurement.2021.109453
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (387) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return