GNSS World of China

Volume 48 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
LI Xinchun, LI Ying. CSI indoor positioning algorithm based on GMM-DBC[J]. GNSS World of China, 2023, 48(1): 117-124. doi: 10.12265/j.gnss.2022184
Citation: LI Xinchun, LI Ying. CSI indoor positioning algorithm based on GMM-DBC[J]. GNSS World of China, 2023, 48(1): 117-124. doi: 10.12265/j.gnss.2022184

CSI indoor positioning algorithm based on GMM-DBC

doi: 10.12265/j.gnss.2022184
  • Received Date: 2022-10-10
    Available Online: 2023-02-07
  • A channel state information (CSI) location algorithm based on the Gaussian mixture model and density based clustering (GMM-DBC) is proposed to deal with the low positioning accuracy and high time complexity of Bayesian indoor positioning technology. The GMM probability distribution model is constructed through the initial estimation of the parameters of the sub-model, and the errors were calculated. Then, introduce a strategy to determine the number of sub-models (DSM) to update the parameters of the GMM and reduce the localization error caused by the model accuracy. The tightness between reference points is judged on the basis of the distribution characteristics of different reference points, and the closely connected reference points are classified into one class to reduce the search scope and time complexity. The weights are calculated via the improved Bayesian probability algorithm according to the clustering results, so as to obtain the final positioning results. The experimental results show that the proposed algorithm can well improve the positioning accuracy and reduce the time complexity.

     

  • loading
  • [1]
    ZHOU T Y, LIAN B W, YI Z, et al. Amp-Phi: a CSI-based indoor positioning system[J]. International journal of pattern recognition and artificial intelligence, 2018, 32(21): 1-22. DOI: 10.1142/S0218001418580053
    [2]
    KIM G T, ZAR A K, AUNG M S, et al. Review of indoor positioning: radio wave technology[J]. Applied sciences, 2020, 11(1): 279. DOI: 10.3390/app11010279
    [3]
    YANG C C, SHAO H R. WiFi-based indoor positioning[J]. IEEE communications magazine, 2015, 53(3): 150-157. DOI: 10.1109/MCOM.2015.7060497
    [4]
    BOORANAWONG A, SENGCHUAI K, BURANAPANICHKIT D, et al. RSS-based indoor localization using multi-lateration with zone selection and virtual position-based compensation methods[J]. IEEE access, 2021(99): 1-1. DOI: 10.1109/ACCESS.2021.3068295
    [5]
    ZHANG J, MAO H Q. WKNN indoor positioning method based on spatial feature partition and basketball motion capture[J]. Alexandria engineering journal, 2022, 61(1): 125-134. DOI: 10.1016/j.aej.2021.04.078
    [6]
    吴哲夫, 徐强, 王中友, 等. 基于信道状态信息的无源室内定位[J]. 哈尔滨工程大学学报, 2017, 38(8): 1328-1334.
    [7]
    聂大惟, 朱海, 吴飞, 等. 基于RSSI概率分布与贝叶斯估计的加权定位方法[J]. 全球定位系统, 2022, 47(02): 52-59.
    [8]
    刘帅, 王旭东, 吴楠. 一种基于卷积神经网络的CSI指纹室内定位方法[J]. 工程科学学报, 2021, 43(11): 1512-1521.
    [9]
    杨如民, 陈敏, 余成波. 基于贝叶斯概率优化的Wi-Fi室内定位算法[J]. 计算机应用与软件, 2021, 38(2): 97-144. DOI: 10.3969/j.issn.1000-386x.2021.02.017
    [10]
    TSE D N C, VISWANATH P. Fundamentals of wireless communication (hardcover)[M]. Britain: Cambridge University Press, 2005. DOI: 10.1017/CBO9780511807213
    [11]
    ASHERI H, HOSSEINI R, ARAABI B N. A new EM algorithm for flexibly tied GMMs with large number of components[J]. Pattern recognition, 2021(114): 107836. DOI: 10.1016/j.patcog.2021.107836
    [12]
    SUN H J, WANG S R. Measuring the component overlapping in the gaussian mixture model[J]. Data mining and knowledge discovery, 2011, 23(3): 479-502. DOI: 10.1007/s10618-011-0212-3
    [13]
    柳兴旺. 一种有效估计负二项分布参数的EM算法及其应用[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [14]
    TSENG C H, YEN J S. Enhanced gaussian mixture model for indoor positioning accuracy[C]// International Computer Symposium (ICS), 2016: 462-466. DOI: 10.1109/ICS.2016.0099
    [15]
    KUMAR V, DHOK S B, TRIPATHI R, et al. A review study of hierarchical clustering algorithms for wireless sensor networks[J]. International journal of computer science issues (IJCSI), 2014, 11(3): 92-101.
    [16]
    宋董飞, 徐华. DBSCAN算法研究及并行化实现[J]. 计算机工程与应用, 2018, 54(24): 52-56. DOI: 10.3778/j.issn.1002-8331.1808-0423
    [17]
    BIRANT D, KUT A. ST-DBSCAN: an algorithm for clustering spatial-temporal data[J]. Data and knowledge engineering, 2007, 60(1): 208-221. DOI: 10.1016/j.datak.2006.01.013
    [18]
    阮曙芬. 属性加权多项式朴素贝叶斯算法及应用研究[D]. 武汉: 中国地质大学, 2021.
    [19]
    IBRAHIM M, YOUSSEF M. CellSense: a probabilistic RSS-based GSM positioning system[C]// IEEE Global Telecommunications Conference GLOBECOM, 2010. DOI: 10.1109/GLOCOM.2010.5683779
    [20]
    李新春, 赵忠婷, 于洪仕. 基于局部线性嵌入和梯度提升决策树的信道状态信息室内指纹定位算法研究[J]. 激光与光电子学进展, 2022, 59(2): 392-402.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (228) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return