GNSS World of China

Volume 48 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
YANG Yuncheng, WU Fei, ZHU Hai, ZHU Runzhe, YANG Mingze. Adaptive step detection method combining CNN-BiLSTM-SA motion pattern recognition[J]. GNSS World of China, 2023, 48(2): 71-80. doi: 10.12265/j.gnss.2022167
Citation: YANG Yuncheng, WU Fei, ZHU Hai, ZHU Runzhe, YANG Mingze. Adaptive step detection method combining CNN-BiLSTM-SA motion pattern recognition[J]. GNSS World of China, 2023, 48(2): 71-80. doi: 10.12265/j.gnss.2022167

Adaptive step detection method combining CNN-BiLSTM-SA motion pattern recognition

doi: 10.12265/j.gnss.2022167
  • Received Date: 2022-09-18
  • Accepted Date: 2022-09-18
  • Available Online: 2023-04-28
  • With the popularity of location based services (LBS), smartphone-based pedestrian step detection methods have important impacts on pedestrian dead reckoning (PDR). We propose an adaptive step detection method combining CNN-BiLSTM-SA motion pattern recognition to address the problem that traditional methods have large step counting errors under multiple pedestrian motion patterns. Firstly, the motion patterns are classified according to the walking characteristics of pedestrians, and the local features of different motion patterns of pedestrians are extracted by using convolutional neural network (CNN), and the weights of the extracted motion features are assigned by using self-attention (SA) mechanism, and then the bidirectional long short term memory (BiLSTM) network is combined to mine the pre-post temporal relationship of pedestrian motion features for classification and recognition. Then the peak detection algorithm with two feature constraints, adaptive minimum peak distance and adaptive dynamic threshold, is proposed to detect the step frequency according to the classification results, and the threshold size is dynamically adjusted in walking. The experimental results show that the average error rate of the proposed method for step frequency detection under eight combined motion patterns is 1.31%, which is 5.97% lower than that of the traditional peak detection, and also better than the fixed threshold method.

     

  • loading
  • [1]
    HE X F, JIN R C, DAI H Y. Leveraging spatial diversity for privacy-aware location-based services in mobile networks[J]. IEEE transactions on information forensics and security, 2018, 13(6): 1524-1534. DOI: 10.1109/TIFS.2018.2797023
    [2]
    ZHAO Y C, XU J, WU J, et al. Enhancing camera-based multimodal indoor localization with device-free movement measurement using Wi-Fi[J]. IEEE internet of things journal, 2019, 7(2): 1024-1038. DOI: 10.1109/JIOT.2019.2948605
    [3]
    HOANG M T, YUEN B, DONG X D, et al. Recurrent neural networks for accurate RSSI indoor localization[J]. IEEE internet of things journal, 2019, 6(6): 10639-10651. DOI: 10.1109/JIOT.2019.2940368
    [4]
    刘公绪, 史凌峰. 室内导航与定位技术发展综述[J]. 导航定位学报, 2018, 6(2): 7-14. DOI: 10.16547/j.cnki.10-1096.20180202
    [5]
    POULOSE A, HAN D S. UWB indoor localization using deep learning LSTM networks[J]. Applied sciences, 2020, 10(18): 6290. DOI: 10.3390/app10186290
    [6]
    杨狄, 唐小妹, 李柏渝, 等. 基于超宽带的室内定位技术研究综述[J]. 全球定位系统, 2015, 40(5): 34-40. DOI: 10.13442/j.gnss.1008-9268.2015.05.007
    [7]
    WU Y, ZHU H B, DU Q X, et al. A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[J]. International journal of automation and computing, 2019, 16(1): 65-83. DOI: 10.1007/s11633-018-1150-y
    [8]
    QIAN J, MA J B, YING R, et al. An improved indoor localization method using smartphone inertial sensors[C]//International Conference on Indoor Positioning and Indoor Navigation, IEEE, 2013: 1-7. DOI: 10.1109/IPIN.2013.6817854
    [9]
    TIAN Q L, SALCIC Z, KEVIN I, et al. A multi-mode dead reckoning system for pedestrian tracking using smartphones[J]. IEEE sensors journal, 2015, 16(7): 2079-2093. DOI: 10.1109/JSEN.2015.2510364
    [10]
    YANG R, WANG B W. PACP: a position-independent activity recognition method using smartphone sensors[J]. Information, 2016, 7(4): 72. DOI: 10.3390/info7040072
    [11]
    CHEN K X, YAO L N, ZHANG D L, et al. A semisupervised recurrent convolutional attention model for human activity recognition[J]. IEEE transactions on neural networks and learning systems, 2019, 31(5): 1747-1756. DOI: 10.1109/TNNLS.2019.2927224
    [12]
    WANG Q, LUO H Y, XIONG H, et al. Pedestrian dead reckoning based on walking pattern recognition and online magnetic fingerprint trajectory calibration[J]. IEEE internet of things journal, 2020, 8(3): 2011-2026. DOI: 10.1109/JIOT.2020.3016146
    [13]
    PHAM V T, NGUYEN D A, DANG N D, et al. Highly accurate step counting at various walking states using low-cost inertial measurement unit support indoor positioning system[J]. Sensors, 2018, 18(10): 3186. DOI: 10.3390/s18103186
    [14]
    郭丞, 吴飞, 朱海. 多场景下的行人步频自适应检测方法[J]. 全球定位系统, 2021, 46(6): 98-106. DOI: 10.12265/j.gnss.2021062101
    [15]
    AHOLA T M. Pedometer for running activity using accelerometer sensors on the wrist[J]. Medical equipment insights, 2010(3): 1. DOI: 10.4137/MEI.S3748
    [16]
    TUMKUR K, SUBBIAH S. Modeling human walking for step detection and stride determination by 3-axis accelerometer readings in pedometer[C]//The 4th International Conference on Computational Intelligence, Modelling and Simulation, 2012: 199-204. DOI: 10.1109/CIMSim.2012.65
    [17]
    陈国良, 李飞, 张言哲. 一种基于自适应波峰检测的MEMS计步算法[J]. 中国惯性技术学报, 2016, 23(3): 315-321. DOI: 10.13695/j.cnki.12-1222/o3.2015.03.007
    [18]
    WANG B Y, LIU X L, YU B G, et al. Pedestrian dead reckoning based on motion mode recognition using a smartphone[J]. Sensors, 2018, 18(6): 1811. DOI: 10.3390/s18061811
    [19]
    LEE S, KIM B, KIM H, et al. Inertial sensor-based indoor pedestrian localization with minimum 802.15. 4a configuration[J]. IEEE transactions on industrial informatics, 2011, 7(3): 455-466. DOI: 10.1109/TII.2011.2158832
    [20]
    ZHANG H M, YUAN W, SHEN Q, et al. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition[J]. IEEE sensors journal, 2014, 15(3): 1421-1429. DOI: 10.1109/JSEN.2014.2363157
    [21]
    崔家梁, 冯朝晖, 李芹, 等. 基于CNN和RNN的像素级视频目标跟踪算法[J]. 全球定位系统, 2019, 44(3): 1-6. DOI: 10.13442/j.gnss.1008-9268.2019.03.001
    [22]
    陈晓雷, 孙永峰, 李策, 等. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 296-309. DOI: 10.13229/j.cnki.jdxbgxb20211031
    [23]
    GU F, KHOSHELHAM K, VALAEE S, et al. Locomotion activity recognition using stacked denoising autoencoders[J]. IEEE internet of things journal, 2018, 5(3): 2085-2093. DOI: 10.1109/JIOT.2018.2823084
    [24]
    WANG Q, YE L, LUO H Y, et al. Pedestrian walking distance estimation based on smartphone mode recognition[J]. Remote sensing, 2019, 11(9): 1140. DOI: 10.3390/rs11091140
    [25]
    CHENG Y W, HU K, WU J, et al. A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings[J]. Advanced engineering informatics, 2021(48): 101247. DOI: 10.1016/J.AEI.2021.101247
    [26]
    WANG X, CHEN G L, CAO X, et al. Robust and accurate step counting based on motion mode recognition for pedestrian indoor positioning using a smartphone[J]. IEEE sensors journal, 2021, 22(6): 4893-4907. DOI: 10.1109/JSEN.2021.3058127
    [27]
    RUSIECKI A. Trimmed categorical cross‐entropy for deep learning with label noise[J]. Electronics letters, 2019, 55(6): 319-320. DOI: 10.1049/EL.2018.7980
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (198) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return