GNSS World of China

Volume 48 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
WEI Tong, YAN Weidong, MA Jian. The effects of higher order ionosphere on GNSS tropospheric parameters estimation[J]. GNSS World of China, 2023, 48(1): 83-97. doi: 10.12265/j.gnss.2022157
Citation: WEI Tong, YAN Weidong, MA Jian. The effects of higher order ionosphere on GNSS tropospheric parameters estimation[J]. GNSS World of China, 2023, 48(1): 83-97. doi: 10.12265/j.gnss.2022157

The effects of higher order ionosphere on GNSS tropospheric parameters estimation

doi: 10.12265/j.gnss.2022157
  • Received Date: 2022-08-31
  • Accepted Date: 2022-10-20
  • Available Online: 2023-02-07
  • In order to study the influence of the high-order ionosphere on the Global Navigation Satellite System (GNSS) tropospheric parameter estimation eight MGEX (Multi GNSS Experience) tracking stations in the Asia Pacific region were selected during the quiet and active periods of solar activity The influence of high-order ionosphere delay on tropospheric parameter estimation in Beidou-2 Navigation Satellite System (BDS-2), Beidou-3 Navigation Satellite System (BDS-3), Global Positioning System (GPS), Global Navigation Satellite System (GLONASS) and Galileo is analyzed through GAMIT10.71 The experimental results show that during the quiet period of solar activity, the maximum influence of high-order ionosphere delay on Galileo’s zenith total delay (ZTD), precipitable water (PW) and north south gradient (${{NS}}_{\text{grad}}$) is 7.70 mm, 1.26 mm and 6.77 mm respectively; The maximum effect of high-order ionosphere delay on the tropospheric east west gradient (${{EW}}_{\text{grad}}$) of GLONASS is 9.30 mm during the active solar period, high-order ionosphere has greater influence on the tropospheric parameter estimation of GNSS among them, the maximum impact of high-order ionosphere delay on the tropospheric ZTD and PW of BDS-2 is 21.30 mm and 3.49 mm respectively; The maximum influence of high-order ionosphere delay on the tropospheric ${{NS}}_{\text{grad}}$ of Galileo is 19.87 mm; The maximum effect of high-order ionosphere delay on tropospheric ${{EW}}_{\text{grad}}$ of GLONASS is 21.21 mm The experimental results further show that high-order ionosphere has little influence on the tropospheric PW estimation of GNSS; ZTD, ${{NS}}_{\text{grad}}$ and ${{EW}}_{\text{grad}}$ have greater influence high-order ionosphere delay has little effect on BDS-3 and GPS tropospheric parameter estimation; Galileo, BDS-2 and GLONASS have greater influence

     

  • loading
  • [1]
    TREGONING P, BOERS R, O’BRIEN D, et al. Accuracy of absolute precipitable water vapor estimates from GPS observations[J]. Journal of geophysical research atmospheres, 1998, 103(D22): 28701-28710. DOI: 10.1029/98JD02516
    [2]
    BÖHM J, NIELL A E, TREGONING P, et al. Global mapping function(GMF): a new empirical mapping function based on numerical weather model data[J]. Geophysical research letters, 2006, 33(7): 304-316. DOI: 10.1029/2005GL025546
    [3]
    SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin géodésique, 1972, 46(3): 279-298. DOI: 10.1007/BF02521844
    [4]
    HOPFIELD H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data[J]. Radio science, 1971, 6(3): 357-367. DOI: 10.1029/RS006i003p00357
    [5]
    KLOBUCHAR J A. Ionospheric effects on GPS[J]. American institute of aeronautics and astronautics, 1996(1): 485-515. DOI: 10.2514/5.9781600866388.0485.0515
    [6]
    HOQUE M M, JAKOWSKI N. Estimate of higher order ionospheric errors in GNSS positioning[J]. Radio science, 2008, 43(5): 68-82. DOI: 10.1029/2007rs003817
    [7]
    ELMAS Z G, AQUNINO M, MARQUES H A, et al. Higher order ionospheric effects in GNSS positioning in the european region[J]. Annales geophysicae, 2011, 29(8): 1383-1399. DOI: 10.5194/angeo-29-1383-2011
    [8]
    WANG Z M, WU Y, ZHANG K F, et al. Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization[J/OL]. [2022-08-20]. Journal of global positioning systems, 2005, 4(1-2): 291-295. https://www.scirp.org/journal/PaperInformation.aspx?paperID=324
    [9]
    BRUNNER F K, GU M. An improved model for the dual frequency ionospheric correction of GPS observations[J]. Manusur geod, 1991(16): 205-214.
    [10]
    BASSIRI S, HAJJ G A. Higher-order ionospheric effects on the global positioning system observables and means of modelling them[J]. Manuscripta geodaetica, 1993, 18(5): 280-289.
    [11]
    PETRIE E J, KING M A, MOORE P, et al. Higher-order ionospheric effects on the GPS reference frame and velocities[J]. Journal of geophysical research:solid earth, 2010, 115(B3): B03417. DOI: 10.1029/2009JB006677
    [12]
    FRITSCHE M, DIETRICH R, KNOFEL C, et al, Impact of higher-order ionospheric terms on GPS estimates[J]. Geophysical research letters, 2005, 32(23): 23311. DOI: 10.1029/2005GL024342
    [13]
    GARCIA-FERNANDEZ M, DESAI S D, BUTALA M D, et al. Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements[J]. Journal of geophysical research:space physics, 2013, 118(12): 7864-7873. DOI: 10.1002/2013JA019356
    [14]
    ELSOBEIEY M, EL-RABBANY A. Impact of second-order ionospheric delay on GPS precise point positioning[J/OL]. [2022-08-20]. Journal of applied geodesy, 2011, 5(1): 37-45. https://www.zhangqiaokeyan.com/academic-journal-foreign_journal-applied-geodesy_thesis/0204112329466.html
    [15]
    HERNANDEZ-PAJARES M, JUAN J M, SANZ J, et al. Second-order ionospheric term in GPS: implementation and impact on geodetic estimates[J]. Journal of geophysical research:solid earth, 2007, 112(B8): B08417. DOI: 10.1029/2006JB004707
    [16]
    AKGUL V, JIN S, GURBUZ G, et al. High-order ionospheric effects on 3-D GPS coordinate estimation in Turkey[C]//IGARSS 2018-2018 IEEE Inrenational Geoscience and Remote Sensing Symposium, 2018: 3135-3138.
    [17]
    CHEN X, GE M, MARQUES H A, et al. Evaluating the impact of higher-order ionospheric corrections on multi-GNSS ultra-rapid orbit determination[J]. Journal of geodesy, 2019, 93(9): 1347-1365. DOI: 10.1007/s00190-019-01249-7
    [18]
    AKGUL V, GURBUZ G, KUTOGLU S H, et al. Effects of the high-order ionospheric delay on GPS-based tropospheric parameter estimations in Turkey[J]. Remote sensing, 2020, 12(21): 3569. DOI: 10.3390/rs12213569
    [19]
    QI L, GUO J, XIA Y, et al. Effect of higher-order ionospheric delay on precise orbit determination of GRACE-FO based on satellite-borne GPS technique[J]. IEEE access, 2021(9): 29842-29849. DOI: 10.1109/ACCESS.2021.3059296
    [20]
    ZHOU H T, WANG L, FU W J, et al. Impact of higher-order ionospheric delay on the reliability of RTK ambiguity estimation[J]. Advances in space research, 2022, 69(1): 727-736. DOI: 10.1016/j.asr.2021.09.031
    [21]
    HADAS T, KRYPIAK-GREGORCZY A, HERNANDEZ-PAJARES M, et al. Impact and implementation of higher-order ionospheric effects on precise GNSS applications[J]. Journal of geophysical research:solid earth, 2017, 122(11): 9420-9436. DOI: 10.1002/2017jb014750
    [22]
    ZUS F, DENG Z, WICKERT J. The impact of higher-order ionospheric effects on estimated tropospheric parameters in precise point positioning[J]. Radio science, 2017, 52(8): 963-971. DOI: 10.1002/2017rs006254
    [23]
    曹炳强, 成英燕, 许长辉, 等. 间距分区法在解算卫星连续运行站数据中的应用[J]. 测绘通报, 2016(11): 15-17. DOI: 10.13474/j.cnki.11-2246.2016.0355
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(11)

    Article Metrics

    Article views (349) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return