GNSS World of China

Volume 47 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
XIONG Wen, WANG Bowen, LIU Yiwen, ZHU Qinglin. Error analysis and parameter optimization of ionospheric autocorrelation prediction method[J]. GNSS World of China, 2022, 47(5): 45-50. doi: 10.12265/j.gnss.2022097
Citation: XIONG Wen, WANG Bowen, LIU Yiwen, ZHU Qinglin. Error analysis and parameter optimization of ionospheric autocorrelation prediction method[J]. GNSS World of China, 2022, 47(5): 45-50. doi: 10.12265/j.gnss.2022097

Error analysis and parameter optimization of ionospheric autocorrelation prediction method

doi: 10.12265/j.gnss.2022097
  • Received Date: 2022-05-30
  • Accepted Date: 2022-07-26
  • Available Online: 2022-09-29
  • Ionospheric delay is an important error source in GNSS high-precision navigation and positioning applications. Through the measurement and short-term prediction of total ionospheric electron content (TEC), the positioning accuracy of GNSS single frequency users can be effectively improved, and the ionospheric effect of other radio systems can also be effectively alleviated. In the past two decades, many effective short-term prediction methods have been proposed, but none of them is absolutely leading, and the prediction accuracy of all these methods needs to be improved. In this paper, using the TEC observation data of five grid points arbitrarily selected from the Madrigal database, the autocorrelation and autoregressive moving average (ARIMA) methods are compared, and then the influence of two parameters on the prediction error in the autocorrelation prediction method is studied. Finally, an optimized parameter setting scheme is put forward for the autocorrelation prediction method. The experimental results show that: 1) The prediction error of the autocorrelation method is slightly smaller than that of the ARIMA method, and the time taken by the autocorrelation method is obviously less than that of the ARIMA method. Therefore, the comprehensive performance of the autocorrelation method is better than ARIMA method; 2) For the autocorrelation method, compared with the traditional “4+12”scheme, “3+9” scheme has better prediction performance on the whole, indicating that the ionosphere current state may be mainly related to the state of the previous three days. The relevant results can be used as a useful reference scheme for the implementation of ionospheric short-term prediction engineering.“3+9” scheme has better prediction performance on the whole, indicating that the ionosphere current state may be mainly related to the state of the previous three days. The relevant results can be used as a useful reference scheme for the implementation of ionospheric short-term prediction engineering.

     

  • loading
  • [1]
    MUHTAROV P, KUTIEV I. Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data[J]. Radio science, 1999, 34(2): 459-464. DOI: 10.1029/1998RS900020
    [2]
    MARIN D, MIRO G, MIKHAILOV A V. A method for foF2 short-term prediction[J]. Physics and chemistry of the earth, 2000, 25(4): 327-332. DOI: 10.1016/S1464-1917(00)00026-X
    [3]
    CANDER L R, MILOSAVLJEVIC M M, STANKOVIC S S, et al. Ionospheric forecasting technique by artificial neural network[J]. Electron letters, 1998, 34(16): 1573-1574. DOI: 10.1049/el:19981113
    [4]
    LIU R Y, XU Z, WU J, et al. Preliminary studies on ionospheric forecasting in China and its surrounding area[J]. Journal of atmospheric and solar-terrestrial physics, 2005, 67(12): 1129-1136. DOI: 10.1016/j.jastp.2004.12.012
    [5]
    LIU R Y, LIU S L, XU Z H, et al. Application of autocorrelation method on ionospheric short-term forecasting in China[J]. Chinese science bulletin, 2006, 51(3): 352-357. DOI: 10.1007/s11434-006-0352-9
    [6]
    KOUTROUMBAS K, TSAGOURI I, BELEHAKI A. Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe[J]. Annales geophysicae, 2008, 26(2): 371-386. DOI: 10.5194/angeo-26-371-2008
    [7]
    TSAGOURI I, KOUTROUMBAS K, BELEHAKI A. Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters[J]. Radio science, 2009, 44(1): RS0A35. DOI: 10.1029/2008RS004112
    [8]
    TSAI L C, MACALALAD E P, LIU C H. TaiWan ionospheric model (TWIM) prediction based on time series autoregressive analysis[J]. Radio science, 2014, 49(10): 977-986. DOI: 10.1002/2014RS005448
    [9]
    TSAGOURI I, BELEHAKI A. An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response [J]. Journal of atmospheric and solar-terrestrial physics, 2008, 70(16): 2061-2076. DOI: 10.1016/j.jastp.2008.09.010
    [10]
    ZHAO X K, NING B Q, LIU L B, et al. A prediction model of short-term ionospheric foF2 based on AdaBoost[J]. Advances in space research, 2014, 53(3): 387-394. DOI: 10.1016/j.asr.2013.12.001
    [11]
    WANG J, FENG F, MA J G. An adaptive forecasting method for ionospheric critical frequency of F2 Layer[J]. Radio science, 2020, 55(1): 1-12. DOI: 10.1029/2019RS007001
    [12]
    RIDEOUR W, COSTER A J. Automated GPS processing for global total electron content data[J]. GPS solutions, 2006, 10(3): 219-228. DOI: 10.1007/s10291-006-0029-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (227) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return