GNSS World of China

Volume 47 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
DONG Jianquan, GUO Jiang, LI Guangcai, LUO Feng. Influence analysis of different tropospheric models on airborne precise point positioning[J]. GNSS World of China, 2022, 47(6): 9-17, 37. doi: 10.12265/j.gnss.2022095
Citation: DONG Jianquan, GUO Jiang, LI Guangcai, LUO Feng. Influence analysis of different tropospheric models on airborne precise point positioning[J]. GNSS World of China, 2022, 47(6): 9-17, 37. doi: 10.12265/j.gnss.2022095

Influence analysis of different tropospheric models on airborne precise point positioning

doi: 10.12265/j.gnss.2022095
  • Received Date: 2022-05-30
  • Accepted Date: 2022-09-01
  • Available Online: 2022-11-14
  • Tropospheric delay is one of the main factors that affect the performance of precise point positioning (PPP), especially the accuracy of elevation direction solution. Generally, model correction and parameter estimation are used to deal with it. The accuracy of elevation direction solution is very important for gravity field recovery in airborne gravimetry. Therefore, GMF, NMF, VMF1 and VMF3 are respectively used as mapping functions, and 4 $\rm{m}\rm{m}/\sqrt{\rm{h}}$, 10 $\rm{m}\rm{m}/\sqrt{\rm{h}}$, 50 $\rm{m}\rm{m}/\sqrt{\rm{h}}$ and 100 $\rm{m}\rm{m}/\sqrt{\rm{h}}$ are respectively selected as random walk noise parameters to compare and analyze the influence of different tropospheric models on precise point positioning of airborne large dynamic data. The experimental results show that different tropospheric models have great influence on the positioning results in north (N) and up (U) directions, and the model difference can reach 3 mm to 4 mm; VMF1 and VMF3 models are superior to GMF and NMF models in positioning accuracy; selecting $4\;\rm{m}\rm{m}/\sqrt{\rm{h}}$ as random walk noise has higher positioning accuracy than the other three models.

     

  • loading
  • [1]
    李征航, 黄劲松. GPS测量与数据处理[M]. 第三版. 武汉: 武汉大学出版社, 2016.
    [2]
    叶克东. 不同映射函数对实时PPP解算的影响分析[D]. 成都: 西南交通大学, 2021.
    [3]
    张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1009-1013.
    [4]
    吴皓, 陈必焰. GNSS精密单点定位技术在大坝变形监测中的应用[J]. 有色金属文摘, 2019, 34(4): 87-90.
    [5]
    王利. 地质灾害高精度GPS监测关键技术研究[D]. 西安: 长安大学, 2014.
    [6]
    方荣新, 施闯, 辜声峰. 基于PPP动态定位技术的同震地表形变分析[J]. 武汉大学学报(信息科学版), 2009, 34(11): 1340-1343,1358.
    [7]
    张小红, 刘经南, FORSBERG REN. 基于精密单点定位技术的航空测量应用实践[J]. 武汉大学学报(信息科学版), 2006, 31(1): 19-22,46.
    [8]
    叶世榕. GPS非差相位精密单点定位理论与实现[D]. 武汉: 武汉大学, 2002.
    [9]
    孟宁. 基于BDS的航空重力测量中加速度估计方法研究[D]. 西安: 长安大学, 2020.
    [10]
    闫志闯, 楼楠, 李婧. 对流层参数估计策略对PPP精度影响分析[J]. 测绘工程, 2019, 28(1): 5-8,13.
    [11]
    翟树峰, 吕志平, 崔阳, 等. 对流层映射函数对精密单点定位的影响分析[J]. 测绘工程, 2018, 27(1): 24-30.
    [12]
    熊聚中. 估计对流层折射的随机过程方法研究[J]. 全球定位系统, 2007, 32(6): 11-13.
    [13]
    章迪. GNSS对流层天顶延迟模型及映射函数研究[D]. 武汉: 武汉大学, 2017.
    [14]
    葛茂荣, 刘经南. GPS定位中对流层折射估计研究[J]. 测绘学报, 1996, 25(4): 285-291.
    [15]
    HOPFIELD H S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of geophysical research, 1969, 74(18): 4487-4499. DOI: 10.1029/JC074I018P04487
    [16]
    SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin géodésique, 1972, 107(1): 279-298. DOI: 10.1007/BF02522083
    [17]
    MARINI J W. Correction of satellite tracking data for an arbitrary tropospheric profile[J]. Radio science, 1972, 7(2): 223-231. DOI: 10.1029/RS007I002P00223
    [18]
    NIELL A E. Global mapping functions for the atmosphere delay at radio wavelengths[J]. Journal of geophysical research:solid earth, 1996, 101(B2): 3227-3246. DOI: 10.1029/95JB03048
    [19]
    BOEHM J, NIELL A, TREGONING P, et al. Global mapping function (GMF): a new empirical mapping function based on numerical weather model data[J]. Geophysical research letters, 2006, 25(33): L07304. DOI: 10.1029/2005GL025546
    [20]
    魏懂, 李浩军. 对流层映射函数对精密单点定位精度的影响[J]. 导航定位学报, 2019, 7(3): 82-86.
    [21]
    BOEHM J, SCHUH H. Vienna mapping functions in VLBI analyses[J]. Geophysical research letters, 2004, 310(1): L01603. DOI: 10.1029/2003GL018984
    [22]
    BOEHM J, WERL B, SCHUH H. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data[J]. Journal of geophysical research, 2006, 111(B2): 05351. DOI: 10.1029/2005JB003629
    [23]
    DANIEL L, JOHANNES B. VMF3/GPT3: refined discrete and empirical troposphere mapping functions[J]. Journal of geodesy, 2018, 92(4): 349-360. DOI: 10.1007/S00190-017-1066-2
    [24]
    李黎, 匡翠林, 朱建军, 等. 水平梯度和映射函数对PPP对流层延迟估计的影响分析[J]. 工程勘察, 2011, 39(5): 52-56,60.
    [25]
    石鼎, 刘磊, 李永怀, 等. 对流层映射函数模型对CMONOC网解算精度对比分析[J]. 地理空间信息, 2021, 19(6): 75-78. DOI: 10.3969/j.issn.1672-4623.2021.06.020
    [26]
    崔阳, 苗亚哲, 辜文杰, 等. 非差模型与双差模型的定位精度比较[J]. 测绘工程, 2019, 28(2): 6-12. DOI: 10.19349/j.cnki.issn1006-7949.2019.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views (263) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return