GNSS World of China

Volume 47 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
GUAN Qinglin, FAN Chunming, WANG Junjie. Single-frequency single-point positioning performance analysis of combined BDS-3/GNSS systems in Asia-Pacific[J]. GNSS World of China, 2022, 47(6): 102-108. doi: 10.12265/j.gnss.2022042
Citation: GUAN Qinglin, FAN Chunming, WANG Junjie. Single-frequency single-point positioning performance analysis of combined BDS-3/GNSS systems in Asia-Pacific[J]. GNSS World of China, 2022, 47(6): 102-108. doi: 10.12265/j.gnss.2022042

Single-frequency single-point positioning performance analysis of combined BDS-3/GNSS systems in Asia-Pacific

doi: 10.12265/j.gnss.2022042
  • Received Date: 2022-03-21
    Available Online: 2022-11-14
  • BeiDou-3 Navigation Satellite System (BDS-3) has provided positioning navigation and timing (PNT) services for users worldwide. This paper analyzed the single-frequency single-point positioning (SPP) performance of BDS-3 and its combination with other Global Navigation Satellite System (GNSS) in terms of the mean number of visible satellites, geomettic dilution of precision (GDOP), positioning accuracy, positioning success ratio and pseudo-range residuals using 7 day observations collected at MGEX WHU2 station. The results show that, in the Asia-Pacific region, the RMS of BDS-3 SPP results is 1.19 m, 2.34 m, and 2.38 m in horizontal, vertical and three-dimensional (3D), respectively, the performance of BDS-3 SPP is better that the GPS, GLONASS and Galileo. The 3D accuracy of BDS-3 SPP is improved by 54.8%, 27.2%, 86.4% and 1.2%, respectively, compared with the BDS-2, GPS, GLONASS and Galileo SPP. The accuracy of the combined BDS/GPS/Galileo SPP is 0.96 m, 1.66 m and 1.77 m in horizontal, vertical and 3D, respectively, which is the best among the multi-GNSS SPP. Compared with the BDS SPP results, the accuracy of the combined BDS/GPS/Galileo SPP is improved by 18.6%, 19.4%, and 17.3% in horizontal, vertical and 3D, respectively.

     

  • loading
  • [1]
    张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. DOI: 10.11947/j.AGCS.2019.20190176
    [2]
    姜卫平, 郭迟, 左文炜. 我国导航与位置服务的进展及思考[J]. 测绘通报, 2020(1): 1-4,25.
    [3]
    李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12): 1475-1481.
    [4]
    刘经南, 郭文飞, 郭迟, 等. 智能时代泛在测绘的再思考[J]. 测绘学报, 2020, 49(4): 403-414. DOI: 10.11947/j.AGCS.2020.20190539
    [5]
    NIE Z X, LIU F, GAO Y. Real-time precise point positioning with a low-cost dual-frequency GNSS device[J]. GPS solutions, 2020, 24(1): 9. DOI: 10.1007/s10291-019-0922-3
    [6]
    HAMZA V, STOPAR B, AMBROI T, et al. Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes[J]. Sensors, 2020, 20(16): 4375. DOI: 10.3390/s20164375
    [7]
    NING F S, MENG X L, WANFG Y T. Low-cost receiver and network real-time kinematic positioning for use in connected and autonomous vehicles[J]. Journal of navigation, 2019, 72(4): 1-14. DOI: 10.1017/S037346331800111X
    [8]
    FAMIGLIETTI N A, CECERE G, GRASSO C, et al. A test on the potential of a low cost unmanned aerial vehicle RTK/PPK solution for precision positioning[J]. Sensors, 2021, 21(11): 3882. DOI: 10.3390/s21113882
    [9]
    陈永贵, 朱玉香. 北极地区BDS-3伪距单点定位精度分析[J]. 全球定位系统, 2020, 45(4): 114-118.
    [10]
    彭劲松. GEO卫星对BDS-3伪距单点定位性能定量提升分析[J]. 全球定位系统, 2020, 45(5): 62-66.
    [11]
    谭理庆, 曹阳, 彭琦, 等. BDS-3数据质量及SPP定位性能分析[J]. 全球定位系统, 2021, 46(1): 68-76. DOI: 10.12265/j.gnss.2020102802
    [12]
    杨毅, 胡洪, 解雪峰, 等. BDS-3/GPS在遮挡环境下定位性能分析[J]. 全球定位系统, 2021, 46(3): 104-110. DOI: 10.12265/j.gnss.2020120301
    [13]
    王汉民. 北斗二号对北斗三号伪距单点定位精度影响分析[J]. 全球定位系统, 2021, 46(2): 44-48. DOI: 10.12265/j.gnss.2020082504
    [14]
    孔豫龙, 柴洪洲, 潘宗鹏, 等. BDS-3新卫星的标准单点定位结果分析[J]. 测绘科学, 2019, 44(4): 152-157,195.
    [15]
    慕仁海, 党亚民, 许长辉. BDS-3新频点单点定位研究[J]. 测绘通报, 2021(3): 12-17.
    [16]
    彭劲松. BDS-3新频率与Galileo单频组合伪距单点定位精度分析[J]. 全球定位系统, 2021, 46(1): 57-61. DOI: 10.12265/j.gnss.2020102001
    [17]
    GUAN Q L, FAN C M, ZHENG J S, et al. Multistep weighted least squares estimation method for improving single-point positioning accuracy[J]. Journal of applied remote sensing, 2019, 13(3): 038503. DOI: 10.1117/1.JRS.13.038503
    [18]
    SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin géodésique (1946-1975), 1972, 46(3): 279-298. DOI: 10.1007/BF02521844
    [19]
    KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE transactions aerospace and electronic systems, 1987, AES-23(3), 325-331. DOI:10.1109/TAES.1987.310829
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (265) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return