GNSS World of China

Volume 47 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
CHI Qin, ZHAO Xingwang, CHEN Jian. Short-term rainfall forecast by several typical machine learning algorithm[J]. GNSS World of China, 2022, 47(4): 122-128. doi: 10.12265/j.gnss.2022039
Citation: CHI Qin, ZHAO Xingwang, CHEN Jian. Short-term rainfall forecast by several typical machine learning algorithm[J]. GNSS World of China, 2022, 47(4): 122-128. doi: 10.12265/j.gnss.2022039

Short-term rainfall forecast by several typical machine learning algorithm

doi: 10.12265/j.gnss.2022039
  • Received Date: 2022-03-21
    Available Online: 2022-07-20
  • According to the characteristic changes of precipitable water vapor and meteorological parameters (temperature (T), humidity (U), dew point temperature (Td), surface pressure (P)) during the rainfall process, it is possible to establish a short-term rainfall forecast model based on machine learning algorithms. This paper uses the 3-hour zenith tropospheric delay and meteorological data of the bjfs station and wuh2 station in 2020 as examples to construct the prediction model of the four algorithms: random forest (RF), support vector machine (SVM), K-nearest neighbor (KNN), and naive bayes classifier (NBC), and introduces the rainfall events at each time as the new feature vector, adopts the segmentation method of 70% and 80% training sets respectively, takes the rainfall events as the model output, and the applicability of the model is evaluated by the accuracy, precision rate and false negative rate. After obtaining the accuracy is about 0.92, the precision rate is about 80%, and the false negative rate is about 20%, the data of 150—200 days in the time series are further used as samples to predict the rainfall of 200—250 days. The results indicate that The short-term rainfall forecast model based on machine learning can predict more than 80% of the rainfall events in the next 3 hours, and the false negative rate is below 20%, among which the SVM model has better comprehensive performance. Compared with the traditional threshold model, the accuracy rate is equivalent, and the false negative rate is decreased by about 50%.

     

  • loading
  • [1]
    HE Q, ZHANG K F, WU S Q, et al. Real-time GNSS-derived PWV for typhoon characterizations: a case study for super typhoon Mangkhut in Hong Kong[J]. Remote sensing, 2019, 12(1): 104. DOI: 10.3390/rs12010104
    [2]
    FAYAZ S A, ZAMAN M, BUTT M A. Knowledge discovery in geographical sciences—a systematic survey of various machine learning algorithms for rainfall prediction[C]//International Conference on Innovative Computing and Communications, 2021: 593-608. DOI: 10.1007/978-981-16-2597-8_51
    [3]
    王江波. 长短期记忆网络在短临降雨中的应用[D]. 南京: 南京信息工程大学, 2021.
    [4]
    AHMED K, SACHINDRA D A, SHAHID S, et al. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms[J]. Atmospheric research, 2020(236): 104806. DOI: 10.1016/j.atmosres.2019.104806
    [5]
    YANG M X, WANG H, JIANG Y Z, et al. GECA proposed ensemble–KNN method for improved monthly runoff forecasting[J]. Water resources management, 2020, 34(11): 849-863. DOI: 10.1007/s11269-019-02479-2
    [6]
    LIU S, LIU R, TAN N Z. A spatial improved-KNN-based flood inundation risk framework for urban tourism under two rainfall scenarios[J]. Sustainability, 2021, 13(5): 2859. DOI: 10.3390/su13052859
    [7]
    HUANG M, LIN R, HUANG S, et al. A novel approach for precipitation forecast via improved K-nearest neighbor algorithm[J]. Advanced engineering informatics, 2017(33): 89-95. DOI: 10.1016/j.aei.2017.05.003
    [8]
    BOJANG P O, YANG T-C, PHAM Q B, et al. Linking singular spectrum analysis and machine learning for monthly rainfall forecasting[J]. Applied sciences, 2020, 10(9): 3224. DOI: 10.3390/app10093224
    [9]
    SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015(1): 802-810. DOI: 10.48550/arXiv.1506.04214
    [10]
    周永江, 姚宜斌, 颜笑, 等. 融合 GNSS 气象参数的 BP 神经网络雾霾预测研究[J]. 大地测量与地球动力学, 2019, 39(11): 1148-1152.
    [11]
    刘洋, 赵庆志, 姚顽强. 基于多隐层神经网络的GNSS PWV和气象数据的降雨预测研究[J]. 测绘通报, 2019(S1): 36-40.
    [12]
    赵庆志, 刘洋, 姚顽强. 利用最小二乘支持向量机的短临降雨预测模型构建[J]. 大地测量与地球动力学, 2021, 41(2): 152-156. DOI: 10.14075/j.jgg.2021.02.008
    [13]
    BYUN S H, BAR-SEVER Y E. A new type of troposphere zenith path delay product of the international GNSS service[J]. Journal of geodesy, 2009, 83(3): 367-373. DOI: 10.1007/S00190-008-0288-8
    [14]
    HUANG S, HUANG M M, LYU Y J. An improved KNN-based slope stability prediction model[J]. Advances in civil engineering, 2020(11): 1-16. DOI: 10.1155/2020/8894109
    [15]
    WANG H, ASEFA T, SARKAR A. A novel non-homogeneous hidden Markov model for simulating and predicting monthly rainfall[J]. Theoretical and applied climatology, 2021, 143(7): 627-638. DOI: 10.1007/s00704-020-03447-2
    [16]
    姚宜斌, 赵庆志, 李祖锋, 等. 基于全球导航卫星系统资料的短时降水预报[J]. 水科学进展, 2016, 27(3): 357-365. DOI: 10.14042/j.cnki.32.1309.2016.03.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (532) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return