• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

LUO Xiangtao, HUANG Liangke. Atmospheric weighted mean temperature modeling for Japan[J]. GNSS World of China, 2022, 47(4): 93-100. DOI: 10.12265/j.gnss.2022035
Citation: LUO Xiangtao, HUANG Liangke. Atmospheric weighted mean temperature modeling for Japan[J]. GNSS World of China, 2022, 47(4): 93-100. DOI: 10.12265/j.gnss.2022035

Atmospheric weighted mean temperature modeling for Japan

More Information
  • Received Date: March 08, 2022
  • Accepted Date: March 08, 2022
  • Available Online: July 21, 2022
  • Due to the frequent occurrence of natural disasters, complex changes in water vapor characteristics, and sparse sounding stations in Japan, it restricts the acquisition of high-precision water vapor, and lacks a high-precision Tm model in this area. In view of this article adopts the 2009 to 2016 Global Geodetic Observing System (GGOS) weighted average temperature (Tm) with the ERA-Interim 2 m Ts grid data, a new Tm model (JQTm model) suitable for the Japanese region that takes into account the seasonal variation of the Tm residual and the daily cycle variation is established. In addition, using the data of 13 sounding stations and 110 GGOS Atmosphere Tm grids in Japan in 2017, the accuracy of the newly established JQTm model in this paper is evaluated in Japan. The study found that compared with the GGOS Atmosphere Tm grid data, the bias and root mean square error (RMSE) of the JQTm model are 0.15 K and 1.92 K, respectively. The RMSE is 41.16% (1.33 K) and 44.41% (1.53 K) higher than the GPT2w-1 and GPT2w-5 models, respectively. Compared with the sounding data, the bias and RMSE of the JQTm model are –0.66 K and 2.14 K, respectively. The RMSE is 28.43% (0.85 K) and 29.61% (0.90 K) higher than the Bevis model, GPT2w-1 model, and GPT2w-5 model, respectively. The JQTm model can provide high-precision Tm values for the Japanese region and provide an important basis for studying atmospheric water vapor and extreme weather in this region.
  • [1]
    WANG J H, ZHANG L Y, DAI A G. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications[J]. Journal of geophysical research, 2005, 110(D21): D21101. DOI: 10.1029/2005JD006215
    [2]
    姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10): 1408-1420. DOI: 10.11947/j.AGCS.2017.20170333
    [3]
    ZHAO Q Z, YAO Y B, YAO W Q. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of atmospheric and solar terrestrial physics, 2018(167): 124-133. DOI: 10.1016/j.jastp.2017.11.013
    [4]
    BEVIS M, BUSINGER S, HERRING T A, et al. GNSS meteorology: remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of geophysical research:atmospheres, 1992, 97(D14): 15787-15801. DOI: 10.1029/92jd01517
    [5]
    ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio science, 1987, 22(3): 379-386. DOI: 10.1029/RS022i003p00379
    [6]
    YAO Y B, XU C Q, ZHANG B, et al. GTm-III: a new global empirical model for mapping zenith wet delays onto precipitable water vapour[J]. Geophysical journal international, 2014, 197(1): 202-212. DOI: 10.1093/gji/ggu008
    [7]
    ROSS R J, ROSENFELD S. Estimating mean weighted temperature of the atmosphere for Global Positioning System applications[J]. Journal of geophysical research, 1997, 102(D18): 21719-21730. DOI: 10.1029/97JD01808
    [8]
    YAO Y B, ZHANG B, XU C Q, et al. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GNSS meteorology[J]. Journal of geodesy, 2014, 88(3): 273-282. DOI : 10.1007/s00190-013-0684-6
    [9]
    许超钤, 姚宜斌, 张豹, 等. GGOS Atmosphere大气加权平均温度数据的精度检验与分析[J]. 测绘地理信息, 2014, 39(4): 13-16.
    [10]
    HUANG L K, JIANG W P, LIU L L, et al. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor[J]. Journal of geodesy, 2019, 93(D14): 159-176. DOI: 10.1007/s00190-018-1148-9
  • Cited by

    Periodical cited type(1)

    1. 徐爱功,黄天舒,韩晓虎,赵洪涛,徐宗秋. 2021年8月汉中—广元降雨过程的BDS数据分析. 测绘科学. 2023(08): 10-17+80 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (705) PDF downloads (22) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return