GNSS World of China

Volume 47 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
SHI Shang, WANG Qing, ZHANG Bo, YANG Yuan, XU Jiujing. Method for eliminating pseudolite near-far effect based on orthogonal subspace projection[J]. GNSS World of China, 2022, 47(3): 9-15. doi: 10.12265/j.gnss.2021111701
Citation: SHI Shang, WANG Qing, ZHANG Bo, YANG Yuan, XU Jiujing. Method for eliminating pseudolite near-far effect based on orthogonal subspace projection[J]. GNSS World of China, 2022, 47(3): 9-15. doi: 10.12265/j.gnss.2021111701

Method for eliminating pseudolite near-far effect based on orthogonal subspace projection

doi: 10.12265/j.gnss.2021111701
  • Received Date: 2021-11-17
    Available Online: 2022-06-08
  • Receivers in ground-based pseudolite systems are often affected by the near-far effect, causing failure acquisition of far-field pseudolite signals. An optimization method based on orthogonal subspace projection is introduced in this paper, which is applied to code division multiple access (CDMA) pseudolite signals. Firstly, strong-signal code phases and Doppler frequencies are obtained through conventional sliding correlation to calculate the orthogonal projection operator. Then the weak-signal space is obtained by the received signal subtracting its projection in the strong-signal space. Finally, the re-acquisition is done in the weak-signal space to eliminate of the interference of strong signals. The experimental result indicates that the orthogonal subspace projection can effectively improve weak-signal acquisition performance in the power ratio range of lower than 30 dB, which is of great importance to widen the effective working range of ground-based pseudolite systems and the limitation of pseudolite receivers’ signal power ratio tolerance.

     

  • loading
  • [1]
    郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展[J]. 全球定位系统, 2019, 44(2): 1-12.
    [2]
    饶文利. 室内三维定位分类、方法、技术综述[J]. 测绘与空间地理信息, 2021, 44(3): 164-169. DOI: 10.3969/j.issn.1672-5867.2021.03.046
    [3]
    杨芳, 范金峰, 马军, 等. 导航增强伪卫星时间同步技术与精度分析[J]. 导航定位与授时, 2021, 8(3): 132-136.
    [4]
    马鹏程, 唐小妹, 朱祥维, 等. 伪卫星应用中远近效应及其抑制技术分析[J]. 全球定位系统, 2016, 41(5): 28-34.
    [5]
    王福军, 丁小燕, 谢维华, 等. 卫星导航干扰抑制与信号增强算法研究[J]. 全球定位系统, 2019, 44(4): 47-52.
    [6]
    MADHANI P H, AXElRAD P, KRUMVIEDA K, et al. Application of successive interference cancellation to the GPS pseudolite near-far problem[J]. IEEE transactions on aerospace and electronic systems, 2003, 39(2): 481-488. DOI: 10.1109/TAES.2003.1207260
    [7]
    刘旭, 姚铮, 吕红丽, 等. 基于SIC的伪卫星系统抗远近效应捕获算法研究[J]. 全球定位系统, 2020, 45(1): 12-18.
    [8]
    PATEL P, HOLTZMAN J. Performance comparison of a DS/CDMA system using a successive interference cancellation(IC) and parallel IC scheme under fading[C]// International Conference on Communications, 1994. DOI: 10.1109/ICC.1994.368852
    [9]
    YANG C, MORTON J. Adaptive replica code synthesis for interference suppression in GNSS receivers[C]//International Technical Meeting of the Institute of Navigation, 2009: 131-138.
    [10]
    NUNES F D, SOUSA F M G. GNSS near-far mitigation through subspace projection without phase information[J]. IEEE transactions on aerospace and electronic systems, 2012, 48(3): 2746-2755. DOI: 10.1109/TAES.2012.6237626
    [11]
    MORTON Y T, TSUI J B Y, LIN D M, et al. Assessment and handling of CA code self-Interference during weak GPS signal acquisition[C]//The 16th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2003: 646-653. DOI: 10.1111/j.1365-2621.2010.02532.x
    [12]
    LIU X, YAO Z, LU M Q. Robust time-hopping pseudolite signal acquisition method based on dynamic Bayesian network[J]. GPS solutions, 2021, 25(2). DOI: 10.1007/s10291-020-01066-y
    [13]
    XU L. Research on signal design method of pseudolite "near-far effect" based on TDMA technique[C]// China Satellite Navigation Conference (CSNC), 2017: 417-429.
    [14]
    刘宇航, 蔡伯根, 巴晓辉. 基于伪卫星的导航系统定位方法研究[C]//第十二届中国卫星导航年会, 2021: 7.
    [15]
    谢超, 焦诚, 王乾. 一种跳时直接序列码分多址导航信号测距码优选方法[C]//第十二届中国卫星导航年会, 2021: 6.
    [16]
    王迪, 陈光武, 刘射德. 基于伪卫星信号捕获原理的抗远近效应方法研究[J]. 测绘科学与仪器, 2017, 8(3): 228-237.
    [17]
    LI Y M, GAO J P, JI Y F, et al. Research on near-far Effect and anti-impact noise interference pseudo-code sequence blind estimation algorithm in pseudo satellite system[C]//The 3rd International Conference on Information Communication and Signal Processing (ICICSP), 2020: 413-417. DOI: 10.1109/ICICSP50920.2020.9232101
    [18]
    CHEN M L, ZHAN X Q, YUAN W H, et al. Technical concerns of near-far effect in GNSS space service volume (SSV)[J]. Journal of aeronautics astronautics & aviation, 2016, 48(3): 149-156. DOI: 10.6125/16-0405-883
    [19]
    程建强, 杜丹, 周云, 等. 基于多阵元的室内伪卫星几何布局研究[J]. 无线电工程, 2020, 50(9): 762-768. DOI: 10.3969/j.issn.1003-3106.2020.09.009
    [20]
    汪夕琳, 周亚丽, 张佳. 基于伪码测距技术的无线定位系统设计与仿真[J]. 全球定位系统, 2018, 43(5): 84-90.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (344) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return