GNSS World of China

Volume 47 Issue 2
May  2022
Turn off MathJax
Article Contents
HUA Xirui. Application of sliding generalized extension interpolation method in GLONASS precise clock correction[J]. GNSS World of China, 2022, 47(2): 38-43. doi: 10.12265/j.gnss.2021101308
Citation: HUA Xirui. Application of sliding generalized extension interpolation method in GLONASS precise clock correction[J]. GNSS World of China, 2022, 47(2): 38-43. doi: 10.12265/j.gnss.2021101308

Application of sliding generalized extension interpolation method in GLONASS precise clock correction

doi: 10.12265/j.gnss.2021101308
  • Received Date: 2021-10-13
    Available Online: 2022-04-14
  • In the interpolation of satellite clock data, the accuracy of interpolation algorithm directly affects the accuracy of satellite clock interpolation results, which affects the accuracy of satellite navigation and positioning. Therefore, an appropriate interpolation method should be selected when interpolating satellite clock data. In this paper, the Lagrange interpolation method and Chebyshev fitting method are used for sliding, these two traditional interpolation methods and sliding generalized extension interpolation method are used to interpolate the GLONASS clock error data with an epoch interval of 5 min into 30 s. Results are compared with the precision clock error data of 30 s. The application effect of the three interpolation methods in GLONASS satellite clock error data is analyzed. The obtained results show that the interpolation accuracy of these three interpolation methods can meet the requirements of GLONASS satellite clock data interpolation, and the sliding generalized extension interpolation method has the highest interpolation accuracy.

     

  • loading
  • [1]
    李征航, 黄劲松. GPS测量与数据处理[M]. 3版. 武汉: 武汉大学出版社, 2016.
    [2]
    汪威, 陈明剑, 闫建巧, 等. 北斗三类卫星精密星历内插方法分析比较[J]. 全球定位系统, 2016, 41(2): 60-65.
    [3]
    李大章, 顾和和, 李研岩, 等. GPS精密钟差内插方法研究[J]. 全球定位系统, 2012, 37(3): 75-78. DOI: 10.3969/j.issn.1008-9268.2012.03.024
    [4]
    陈鹏, 陈正阳, 沈家海, 等. 基于广义延拓法的精密卫星钟差插值[J]. 测绘科学, 2010, 35(1): 59-60.
    [5]
    原波, 白征东, 付春浩. 广义延拓插值法在GPS精密钟差插值中的应用[J]. 测绘科学技术学报, 2011, 28(6): 404-406. DOI: 10.3969/j.issn.1673-6338.2011.06.004
    [6]
    化希瑞, 李仲勤, 李振昌, 等. 广义延拓插值法在BDS精密钟差中的应用[J]. 全球定位系统, 2019, 44(4): 96-101.
    [7]
    施浒立, 颜毅华, 徐国华. 工程科学中的广义延拓逼近法[M]. 北京: 科学出版社, 2005.
    [8]
    褚衍东, 常迎香, 张建刚. 数值计算方法[M]. 北京: 科学出版社, 2016.
    [9]
    王俊, 方书山. 精密卫星钟差内插的三种方法及精度分析[J]. 全球定位系统, 2012, 37(4): 49-52. DOI: 10.3969/j.issn.1008-9268.2012.04.016
    [10]
    王兴, 高井祥, 王坚, 等. 利用滑动式切比雪夫多项式拟合卫星精密坐标和钟差[J]. 测绘通报, 2015(5): 6-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (334) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return