GNSS World of China
Citation: | ZHAI Hongliang, WANG Shengli. Comprehensive performance analysis of BDS-3 precise point positioning time transfer[J]. GNSS World of China, 2022, 47(4): 31-38. doi: 10.12265/j.gnss.2021101306 |
[1] |
ALLAN D W, WEISS M A. Accurate time and frequency transfer during common-view of a GPS satellite[C]//The 34th Annual Symposium on Frequency Control, 1980: 334-356. DOI: 10.1109/FREQ.1980.200424
|
[2] |
DAI P P, GE Y L, QIN W J, et al. BDS-3 time group delay and its effect on standard point positioning[J]. Remote sensing, 2019, 11(15): 1819. DOI: 10.3390/rs11151819
|
[3] |
DEFRAIGNE P, BAIRE Q. Combining GPS and GLONASS for time and frequency transfer[J]. Advances in space research, 2011, 47(2): 265-275. DOI: 10.1016/j.asr.2010.07.003
|
[4] |
PETIT G, JIANG Z H. Precise point positioning for TAI computation[C]//International Journal of Navigation and Observation, 2008. DOI: 10.1155/2008/562878
|
[5] |
GE Y L, ZHOU F, LIU T J, et al. Enhancing real-time precise point positioning time and frequency transfer with receiver clock modeling[J]. GPS solutions, 2018, 23(1):20. DOI: 10.1007/s10291-018-0814-y
|
[6] |
GE Y L, DAI P P, QIN W J, et al. Performance of Multi-GNSS precise point positioning time and frequency transfer with clock modeling[J]. Remote sensing, 2019, 11(3): 347. DOI: 10.3390/rs11030347
|
[7] |
GE Y L, DING S, QIN W J, et al. Carrier phase time transfer with Galileo observations[J]. Measurement, 2020(159): 107799. DOI: 10.1016/j.measurement.2020.107799
|
[8] |
JIAO G Q, SONG S L, JIAO W H. Improving BDS-2 and BDS-3 joint precise point positioning with time delay bias estimation[J]. Measurement science and technology, 2020, 31(2): 025001. DOI: 10.1088/1361-6501/ab41cf
|
[9] |
LI X X, YUAN Y Q, ZHU Y T, et al. Precise orbit determination for BDS-3 experimental satellites using iGMAS and MGEX tracking networks[J]. Journal of geodesy, 2018, 93(1): 103-117. DOI: 10.1007/s00190-018-1144-0
|
[10] |
LI X X, XIE W L, HUANG J X, et al. Estimation and analysis of differential code biases for BDS-3/BDS-2 using iGMAS and MGEX observations[J]. Journal of geodesy, 2018, 93(3): 419-435. DOI: 10.1007/s00190-018-1170-y
|
[11] |
PETIT G, JIANG Z. GPS all in view time transfer for TAI computation[J]. Metrologia, 2007, 45(1): 35-45. DOI: 10.1088/0026-1394/45/1/006
|
[12] |
PETIT G. The TAIPPP pilot experiment[C]//IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, 2009. DOI: 10.1109/FREQ.2009.5168153
|
[13] |
PETIT G, KANJ A, LOYER S, et al. 1×10−16 frequency transfer by GPS PPP with integer ambiguity resolution[J]. Metrologia, 2015, 52(2): 301-309. DOI: 10.1088/0026-1394/52/2/301
|
[14] |
PIESTER D, BAUCH A, BECKER J, et al. Two-way satellite time transfer between USNO and PTB[C]//IEEE International Frequency Control Symposium and Exhibition, 2005. DOI: 10.1109/FREQ.2005.1573952
|
[15] |
QIN W J, GE Y L, WEI P, et al. Assessment of the BDS-3 on-board clocks and their impact on the PPP time transfer performance[J]. Measurement, 2019, 153(2): 107356. DOI: 10.1016/j.measurement.2019.107356
|
[16] |
QIN W J, GE Y L, ZHANG Z, et al. Accounting BDS3–BDS2 inter-system biases for precise time transfer[J]. Measurement, 2020, 156(1): 107566. DOI: 10.1016/j.measurement.2020.107566
|
[17] |
RAY J, SENIOR K. IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation[J]. Metrologia, 2003, 40(3): s270-s288. DOI: 10.1088/0026-1394/40/3/307
|
[18] |
SU K, JIN S G. Triple-frequency carrier phase precise time and frequency transfer models for BDS-3[J]. GPS solutions, 2019, 23(3): 86. DOI: 10.1007/s10291-019-0879-2
|
[19] |
TU R, ZHANG P F, ZHANG R, et al. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations[J]. Journal of geodesy, 2018, 93(12): 837-847. DOI: 10.1007/s00190-018-1206-3
|
[20] |
YANG Y X, GAO W G, GUO S R, et al. Introduction to BeiDou-3 Navigation Satellite System[J]. Navigation, 2019, 66(1): 7-18. DOI: 10.1002/navi.291
|
[21] |
YANG Y X, MAO Y, SUN B J. Basic performance and future developments of BeiDou Global Navigation Satellite System[J]. Satellite navigation, 2020, 1(1): 1. DOI: 10.1186/s43020-019-0006-0
|
[22] |
ZHANG P F, TU R, ZHANG R, et al. Combining GPS, BeiDou, and Galileo satellite systems for time and frequency transfer based on carrier phase observations[J]. Remote sensing, 2018, 10(2): 324. DOI: 10.3390/rs10020324
|
[23] |
ZHANG P F, TU R, ZHANG R, et al. Time and frequency transfer using BDS-2 and BDS-3 carrier phase observations[J]. IET radar, sonar and navigation, 2019, 13(8): 1249-1255. DOI: 10.1049/iet-rsn.2019.0011
|
[24] |
ZHANG P F, TU R, GAO Y P, et al. Performance of Galileo precise time and frequency transfer models using quad-frequency carrier phase observations[J]. GPS solutions, 2020, 24(2). DOI: 10.1007/s10291-020-0955-7
|
[25] |
ZHANG Z T, LI B F, NIE L W, et al. Initial assessment of BeiDou-3 Global Navigation Satellite System: signal quality, RTK and PPP[J]. GPS solutions, 2019, 23(4): 111. DOI: 10.1007/s10291-019-0905-4
|
[26] |
陈宪冬. 基于大地型时频传递接收机的精密时间传递算法研究[J]. 武汉大学学报(信息科学版), 2008, 33(3): 245-248.
|
[27] |
吕大千, 曾芳玲, 欧阳晓凤, 等. 时频传递的改进整数相位钟方法[J]. 测绘学报, 2019, 48(7): 889-897.
|
[28] |
闫伟, 袁运斌, 欧吉坤, 等. 非组合精密单点定位算法精密授时的可行性研究[J]. 武汉大学学报(信息科学版), 2011, 36(6): 648-651.
|
[29] |
于合理, 郝金明, 刘伟平, 等. 附加原子钟物理模型的PPP时间传递算法[J]. 测绘学报, 2016, 45(11): 1285-1292. DOI: 10.11947/j.AGCS.2016.20160217
|
[30] |
张小红, 蔡诗响, 李星星, 等. 利用GPS精密单点定位进行时间传递精度分析[J]. 武汉大学学报(信息科学版), 2010, 35(3): 274-278.
|
[31] |
张小红, 陈兴汉, 郭斐. 高性能原子钟钟差建模及其在精密单点定位中的应用[J]. 测绘学报, 2015, 44(4): 392-398. DOI: 10.11947/j.AGCS.2015.20140287
|