GNSS World of China

Volume 47 Issue 2
May  2022
Turn off MathJax
Article Contents
SUN Shuguang, YANG Xiangyuan, CHEN Wantong, ZHANG Julian, LIU Qing, REN Shiyu. Application of moving horizon estimation method for altitude constrained pseudo-range single-point positioning[J]. GNSS World of China, 2022, 47(2): 21-26, 89. doi: 10.12265/j.gnss.2021092601
Citation: SUN Shuguang, YANG Xiangyuan, CHEN Wantong, ZHANG Julian, LIU Qing, REN Shiyu. Application of moving horizon estimation method for altitude constrained pseudo-range single-point positioning[J]. GNSS World of China, 2022, 47(2): 21-26, 89. doi: 10.12265/j.gnss.2021092601

Application of moving horizon estimation method for altitude constrained pseudo-range single-point positioning

doi: 10.12265/j.gnss.2021092601
  • Received Date: 2021-09-26
    Available Online: 2022-04-13
  • In order to improve the positioning performance of pseudo-range single-point positioning (SPP) technology in Global Navigation Satellite System (GNSS), a moving horizon estimation (MHE) algorithm with height constraint was proposed. On the basis of adding height as nonlinear constraint to SPP parameter estimation, constrained MHE algorithm is used to improve the accuracy of SPP. Experiments show that compared with the least squares (LS) method, the MHE filter based on high constraint has better smoothing performance, and the effectiveness and feasibility of MHE scheme with additional height constraints are verified. The results obtained are of great significance to the practical application of SPP.

     

  • loading
  • [1]
    范福平. GNSS 实时观测数据解码及伪距单点定位性能分析[J]. 测绘与空间地理信息, 2021, 44(6): 141-144. DOI: 10.3969/j.issn.1672-5867.2021.06.039
    [2]
    STEIGENBERGER P, MONTENBRUCK O. Consistency of MGEX orbit and clock products[J]. Engineering, 2020, 6(8): 898-903. DOI: 10.1016/j.eng.2019.12.005
    [3]
    ZAMINPARDAZ S, TEUNISSEN P J G, NADARAJAH N. IRNSS/NavIC single-point positioning: a service area precision analysis[J]. Marine geodesy, 2017, 40(4): 259-274. DOI: 10.1080/01490419.2016.1269034
    [4]
    LIU R X, GUO B F, ZHANG A M, et al. Research on GPS precise point positioning algorithm with a sea surface height constraint[J]. Ocean engineering, 2020(197): 106826. DOI: 10.1016/j.oceaneng.2019.106826
    [5]
    ATIA M M, WASLANDER S L. Map-aided adaptive GNSS/IMU sensor fusion scheme for robust urban navigation[J]. Measurement, 2018(131): 615-627. DOI: 10.1016/j.measurement.2018.08.050
    [6]
    KERMARREC G, NEUMANN I, ALKHATIB H, et al. The stochastic model for Global Navigation Satellite Systems and terrestrial laser scanning observations: a proposal to account for correlations in least squares adjustment[J]. Journal of applied geodesy, 2019, 13(2): 93-104. DOI: 10.1515/jag-2018-0019
    [7]
    SIMON D. Optimal state estimation: Kalman, H∞, and nonlinear approaches [M]. Cleveland: Cleveland State University, 2006.
    [8]
    HU G G, GAO B B, ZHONG Y M, et al. Unscented Kalman filter with process noise covariance estimation for vehicular INS/GPS integration system[J]. Information fusion, 2020, 64(1): 194-204. DOI: 10.1016/j.inffus.2020.08.005
    [9]
    SIMON D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[J]. IET control theory and applications, 2010, 4(8): 1303-1318. DOI: 10.1049/iet-cta.2009.0032
    [10]
    孔俊东. 一类滚动时域估计方法的性能指标研究[D]. 杭州: 杭州电子科技大学, 2020.
    [11]
    SÁNCHEZ G, MURILLO M, GIOVANINI L. Adaptive arrival cost update for improving moving horizon estimation performance[J]. ISA trans, 2017(68): 54-62. DOI: 10.1016/j.isatra.2017.02.012
    [12]
    WANG S, CHEN L, GU D B, et al. An optimization based moving horizon estimation with application to localization of autonomous underwater vehicles[J]. Robotics and autonomous systems, 2014, 62(10): 1581-1596. DOI: 10.1016/j.robot.2014.05.004
    [13]
    ZHANG X H, ZUO X, LI P. Mathematic model and performance comparison between ionosphere free combined and uncombined precise point positioning[J]. Geomatics and information science of Wuhan University, 2013, 38(5): 561-565. DOI: 10.1016/j.robot.2014.05.004
    [14]
    BAHADUR B, NOHUTCU M. PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis[J]. GPS solutions, 2018, 22(4): 113. DOI: 10.1007/s10291-018-0777-z
    [15]
    LUNDBERG J B. Alternative algorithms for the GPS static positioning solution[J]. Applied mathematics and computation, 2001, 119(1): 21-34. DOI: 10.1016/S0096-3003(99)00219-2
    [16]
    PARK C, TEUNISSEN P J G. Integer least squares with quadratic equality constraints and its application to GNSS attitude determination systems[J]. International journal of control, automation and systems, 2009, 7(4): 566-576. DOI: 10.1007/s12555-009-0408-0
    [17]
    PHATAK M, CHANSARKAR M, KOHLI S. Position fix from three GPS satellites and altitude: a direct method[J]. IEEE transactions on aerospace and electronic systems, 2002, 35(1): 350-354. DOI: 10.1109/7.745705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (401) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return