GNSS World of China

Volume 47 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
YANG Xu, HE Xiangxiang, WANG Yuanyuan, TAN Fulin, CHEN Xiongchuan. A regional/single station ZTD combined forecasting model based on machine learning algorithm[J]. GNSS World of China, 2022, 47(1): 98-102. doi: 10.12265/j.gnss.2021072902
Citation: YANG Xu, HE Xiangxiang, WANG Yuanyuan, TAN Fulin, CHEN Xiongchuan. A regional/single station ZTD combined forecasting model based on machine learning algorithm[J]. GNSS World of China, 2022, 47(1): 98-102. doi: 10.12265/j.gnss.2021072902

A regional/single station ZTD combined forecasting model based on machine learning algorithm

doi: 10.12265/j.gnss.2021072902
  • Received Date: 2021-07-29
    Available Online: 2022-02-23
  • Aiming at the temporal and spatial characteristics of zenith tropospheric total delay (ZTD), a combined regional/single station ZTD prediction model based on BP neural network and long-term memory network (LSTM) algorithm is proposed. Taking the observation data of 18 stations in Hong Kong continuously operating reference stations (CORS) network for 14 consecutive days as an example, the regional, single station and combined ZTD prediction models are studied by using BP neural network, LSTM and the algorithm proposed in this paper. The prediction results of HKWS station show that the root mean square error (RMSE) of regional, single station and combined ZTD prediction models are 10.2 mm, 10.4 mm and 8.5 mm respectively, and the prediction accuracy of the combined model is improved by 17.2% and 18.4% compared with the regional model and the single station model, respectively.

     

  • loading
  • [1]
    陈阳, 胡伍生. 一种基于遗传算法和BP神经网络的对流层延迟改正模型[J]. 测绘工程, 2018, 27(3): 46-52.
    [2]
    丁茂华, 胡伍生. 一种优化的基于神经网络的经验ZTD模型[J]. 测绘通报, 2017(1): 22-25,52.
    [3]
    王勇, 张立辉, 杨晶. 基于BP神经网络的对流层延迟预测研究[J]. 大地测量与地球动力学, 2011, 31(3): 134-137.
    [4]
    肖恭伟, 欧吉坤, 刘国林, 等. 基于改进的BP神经网络构建区域精密对流层延迟模型[J]. 地球物理学报, 2018, 61(8): 3139-3148. DOI: 10.6038/cjg2018L0565
    [5]
    时瑶佳, 吴飞, 朱海, 等. 基于Keras平台的LSTM模型的对流层延迟预测[J]. 全球定位系统, 2020, 45(6): 115-122.
    [6]
    邱春荣. 基于BP神经网络的多传感器数据融合方法[J]. 长沙民政职业技术学院学报, 2018, 25(2): 130-131. DOI: 10.3969/j.issn.1671-5136.2018.02.035
    [7]
    陈映果. 基于图像处理技术的非接触式心率检测算法研究[D]. 福建: 华侨大学, 2015.
    [8]
    唐跃, 徐曲, 柯波, 等. 基于交叉验证的矿岩爆破块度SVM模型优选研究[J]. 爆破, 2018, 35(3): 74-79. DOI: 10.3963/j.issn.1001-487X.2018.03.012
    [9]
    凡陈玲, 张顺平, 李宇骁, 等. 气敏元件阵列评定P25光催化降解甲醛效率的研究[J]. 传感技术学报, 2012, 25(3): 297-301. DOI: 10.3969/j.issn.1004-1699.2012.03.003
    [10]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
    [11]
    俞祝良. 人工智能技术发展概述[J]. 南京信息工程大学学报(自然科学版), 2017, 9(3): 297-304.
    [12]
    张玉清, 董颖, 柳彩云, 等. 深度学习应用于网络空间安全的现状、趋势与展望[J]. 计算机研究与发展, 2018, 55(6): 1117-1142. DOI: 10.7544/issn1000-1239.2018.20170649
    [13]
    郭峰, 王斌, 刘敏. 基于BP神经网络的时间序列预测研究[J]. 价值工程, 2010, 29(35): 128-129. DOI: 10.3969/j.issn.1006-4311.2010.35.094
    [14]
    高忠华. 基于BP神经网络的发动机机体工时定额研究[J]. 价值工程, 2015, 34(3): 18-19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (439) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return