GNSS World of China

Volume 46 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
TAN Chengdan, LUO Ruidan, LI Yafeng, YUAN Chao, YANG Guang, TIAN Xiangwei. A fast spaceborne GNSS-R sea surface wind speed retrieval method based on observation correction[J]. GNSS World of China, 2021, 46(6): 90-97. doi: 10.12265/j.gnss.2021071402
Citation: TAN Chengdan, LUO Ruidan, LI Yafeng, YUAN Chao, YANG Guang, TIAN Xiangwei. A fast spaceborne GNSS-R sea surface wind speed retrieval method based on observation correction[J]. GNSS World of China, 2021, 46(6): 90-97. doi: 10.12265/j.gnss.2021071402

A fast spaceborne GNSS-R sea surface wind speed retrieval method based on observation correction

doi: 10.12265/j.gnss.2021071402
  • Received Date: 2021-07-14
  • Accepted Date: 2021-07-14
  • Available Online: 2021-12-29
  • The fast-delivery inversion (FDI) algorithm is a typical spaceborne Global Navigation Satellite system Reflectometry (GNSS-R) sea surface wind speed inversion method, which has the characteristics of low computational complexity and fast processing. However, the retrieval observation extraction accuracy in FDI algorithm is low, which leads to low wind speed retrieval accuracy. In view of this, an improved FDI algorithm based on observation correction is proposed to realize the fast and high-precision retrieval of sea surface wind speed. In this method, firstly, the auxiliary measurement information is used to correct the observation to reduce the influence of interference factors, then the sea surface wind speed value is extracted from the ASCAT satellite wind speed data based on the statistical analysis method, and finally the geophysical model function (GMF) relationship between the sea surface wind speed and the corrected observation is established to realize the retrieval of sea surface wind speed. Compared with the traditional FDI algorithm, the wind speed retrieval bias of this method is smaller, and the root-mean-square error (RMSE) is reduced by 29%.

     

  • loading
  • [1]
    HALL C D, CORDEY R. Multistatic scatterometry [C]//International Geoscience and Remote Sensing Symposium, 'Remote Sensing, 1988. DOI: 10.1109/IGARSS.1988.570200
    [2]
    MASHBURN J, AXELRAD P, LOWE S T, et al. Global ocean altimetry with GNSS reflections from TechDemoSat-1[J]. IEEE transactions on geoscience remote sensing, 2018, 56(7): 4088-4097. DOI: 10.1109/TGRS.2018.2823316
    [3]
    MASHBURN J, AXELRAD P, ZUFFADA C, et al. Improved GNSS-R ocean surface altimetry with CYGNSS in the seas of Indonesia[J]. IEEE transactions on geoscience remote sensing, 2020, 58(9): 6071-6087. DOI: 10.1109/TGRS.2020.2973079
    [4]
    胡媛, 陈行杨, 顾旺旺, 等. GNSS-R海面测高现状及其常用方法研究进展[J]. 全球定位系统, 2020, 45(3): 96-103.
    [5]
    CLARIZIA M P, RUF C S, JALES P, et al. Spaceborne GNSS-R minimum variance wind speed estimator[J]. IEEE transactions on geoscience remote sensing, 2014, 52(11): 6829-6843. DOI: 10.1109/TGRS.2014.2303831
    [6]
    FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission[J]. Geophysical research letters, 2015, 42(13): 5435-5441. DOI: 10.1002/2015GL064204
    [7]
    REYNOLDS J, CLARIZIA M P, SANTI E. Wind speed estimation from CYGNSS using artificial neural networks[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2020(13): 708-716. DOI: 10.1109/JSTARS.2020.2968156
    [8]
    刘原华, 何孟然, 牛新亮. GNSS-R海面风速反演技术研究[J]. 全球定位系统, 2020, 45(2): 55-59.
    [9]
    LI W, CARDELLACH E, FABRA F, et al. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals[J]. Geophysical research letters, 2017, 44(16): 8369-8376. DOI: 10.1002/2017GL074513
    [10]
    YAN Q Y, HUANG W M. Sea ice thickness measurement using spaceborne GNSS-R: first results with TechDemoSat-1 data[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2020(13): 577-587. DOI: 10.1109/jstars.2020.2966880
    [11]
    朱勇超. 星载GNSS-R海冰检测与海冰密集度反演方法研究[J]. 测绘学报, 2020, 49(12): 1643.
    [12]
    RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, CAMPS A, et al. Soil moisture retrieval using GNSS-R techniques: Experimental results over a bare soil field[J]. IEEE transactions on geoscience remote sensing, 2009, 47(11): 3616-3624. DOI: 10.1109/TGRS.2009.2030672
    [13]
    FRANCESC M M J, RAUL O, DANIEL P, et al. Single-pass soil moisture retrieval using GNSS-R at L1 and L5 bands: results from airborne experiment[J]. Remote sens, 2021, 13(4): 797. DOI: 10.3390/rs13040797
    [14]
    孙波, 梁勇, 汉牟田, 等. 基于GPS多星三频数据融合的GNSS-IR土壤湿度反演方法[J]. 北京航空航天大学学报, 2020, 46(6): 1089-1096.
    [15]
    LOWE S T, LABRECQUE J L, ZUFFADA C, et al. First spaceborne observation of an earth-reflected GPS signal[J]. Radio science, 2002, 37(1): 1-28. DOI: 10.1029/2000RS002539
    [16]
    GLEASON S, HODGART S, SUN Y, et al. Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing[J]. IEEE transactions on geoscience remote sensing, 2005, 43(6): 1229-1241. DOI: 10.1109/TGRS.2005.845643
    [17]
    UNWIN M, JALES P, TYE J, et al. Spaceborne GNSS-reflectometry on TechDemoSat-1: early mission operations and exploitation[J]. IEEE journal of selected topics in applied earth observations remote sensing, 2016, 9(10): 4525-4539. DOI: 10.1109/JSTARS.2016.2603846
    [18]
    JING C, NIU X L, DUAN C D, et al. Sea surface wind speed retrieval from the first chinese GNSS-R mission: technique and preliminary results[J]. Remote sensing, 2019, 11(24): 3013. DOI: 10.3390/rs11243013
    [19]
    LIU Y X, COLLETT I, MORTON Y J. Application of neural network to GNSS-R wind speed retrieval[J]. IEEE transactions on geoscience remote sensing, 2019, 57(12): 9756-9766. DOI: 10.1109/TGRS.2019.2929002
    [20]
    WANG F, YANG D K, ZHANG B, et al. Waveform-based spaceborne GNSS-R wind speed observation: demonstration and analysis using UK TechDemoSat-1 data[J]. Advances in space research, 2018, 61(6): 1573-1587. DOI: 10.1016/j.asr.2018.01.013
    [21]
    ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE transactions on geoscience remote sensing, 2000, 38(2): 951-964. DOI: 10.1109/36.841977
    [22]
    SOISUVARN S, JELENAK Z, SAID F, et al. The GNSS reflectometry response to the ocean surface winds and waves[J]. IEEE journal of selected topics in applied earth observations remote sensing, 2016, 9(10): 4678-4699. DOI: 10.1109/JSTARS.2016.2602703
    [23]
    LIN W M, PORTABELLA M, FOTI G, et al. Toward the generation of a wind geophysical model function for spaceborne GNSS-R[J]. IEEE transactions on geoscience remote sensing, 2018, 57(2): 655-666. DOI: 10.1109/TGRS.2018.2859191
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (589) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return