GNSS World of China

Volume 46 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
YAN Zichun, WANG Xiaopeng, WANG Bohui, CHAI Hailong. Improved weighted centroid indoor positioning algorithm for 5G base stations[J]. GNSS World of China, 2021, 46(6): 44-48. doi: 10.12265/j.gnss.2021071201
Citation: YAN Zichun, WANG Xiaopeng, WANG Bohui, CHAI Hailong. Improved weighted centroid indoor positioning algorithm for 5G base stations[J]. GNSS World of China, 2021, 46(6): 44-48. doi: 10.12265/j.gnss.2021071201

Improved weighted centroid indoor positioning algorithm for 5G base stations

doi: 10.12265/j.gnss.2021071201
  • Received Date: 2021-07-12
    Available Online: 2021-12-17
  • In response to the problem that in existing base station indoor localization algorithm the selection of localization base stations and the unreasonable setting of weights may lead to low localization accuracy, this paper proposes an improved weighted centroid indoor localization algorithm based on received signal strength indicator (RSSI) in the 5G environment. The algorithm obtains the distance from five known base stations to the point to be located by RSSI ranging, and then makes a circle with the known base station location as the centre. For the intersecting pentagonal area, any three vertices are taken to form a triangle. The triangle's centroid coordinates are calculated by setting the appropriate weights according to the type of base station and the distance to the point to be located, and then a maximum likelihood estimation is made based on the ten triangle's centroid coordinates to obtain the final location point. The simulation results show that the indoor localization accuracy of this algorithm is significantly improved when compared with the normal and weighted centroid algorithms in both sparse and dense base station environments.

     

  • loading
  • [1]
    LIU Q, LU H P, ZHANG H L, et al. Research and design of intelligent vehicle monitoring system based on GPS/GSM[C]//The 6th International Conference on ITS Telecommunications Proceedings, 2006. DOI: 10.1109/ITST.2006.288858
    [2]
    程飞, 章平, 陈新泉, 等. 5G移动通信系统中协作定位技术展望[J]. 天津理工大学学报, 2020, 36(2): 45-51. DOI: 10.3969/j.issn.1673-095X.2020.02.009
    [3]
    陈维克, 李文锋, 首珩, 等. 基于RSSI的无线传感器网络加权质心定位算法[J]. 武汉理工大学学报(交通科学与工程版), 2006, 30(2): 81-84.
    [4]
    熊海龙, 刘漫丹, 刘庆威. 基于校正的无线传感器网络加权定位算法[J]. 华东理工大学学报(自然科学版), 2014, 40(2): 225-229. DOI: 10.3969/j.issn.1006-3080.2014.02.016
    [5]
    杨新宇, 孔庆茹, 戴湘军. 一种改进的加权质心定位算法[J]. 西安交通大学学报, 2010, 44(8): 1-4.
    [6]
    邓克岩. 一种基于RSSI的加权质心算法的改进算法[J]. 自动化与仪器仪表, 2012(3): 136-137. DOI: 10.3969/j.issn.1001-9227.2012.03.057
    [7]
    余振宝, 卢小平, 路泽忠, 等. 一种改进的RSSI室内加权质心定位算法[J]. 测绘科学, 2019, 44(8): 126-131.
    [8]
    路泽忠, 卢小平, 付睢宁, 等. 一种改进的RSSI加权质心定位算法[J]. 测绘科学, 2019, 44(1): 26-31.
    [9]
    彭宇, 王丹. 无线传感器网络定位技术综述[J]. 电子测量与仪器学报, 2011, 25(5): 389-399.
    [10]
    ZHANG Y, YANG MS, CHEN R. Study on wireless remote monitoring system based on GPRS[C]//The 4th International Conference on Wireless Communication, Networking and Mobile Computing, 2008. DOI: 10.1109/WiCom.2008.1190
    [11]
    ZHAO Y L. Standardization of mobile phone positioning for 3G systems[J]. IEEE communications magazine, 2002, 40(7): 108-116. DOI: 10.1109/MCOM.2002.1018015
    [12]
    DENG Z L, YU Y P, YUAN X, et al. Situation and development tendency of indoor positioning[J]. China communications, 2013, 10(3): 42-55. DOI: 10.1109/CC.2013.6488829
    [13]
    ZAFARI F, GKELIAS A, LEUNG K K. A survey of indoor localization systems and technologies[J]. IEEE communications surveys and tutorials, 2019, 21(3): 2568-2599. DOI: 10.1109/COMST.2019.2911558
    [14]
    张平, 陈昊. 面向5G的定位技术研究综述[J]. 北京邮电大学学报, 2018, 41(5): 1-12.
    [15]
    彭友志, 田野, 张炜程, 等. 5G/GNSS融合系统定位精度仿真分析[J]. 厦门大学学报(自然科学版), 2020, 59(1): 101-107.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (471) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return