GNSS World of China

Volume 46 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
MU Ping, LING Ming, HU Rui. Indoor location algorithm based on improved AP selection and random forest fusion[J]. GNSS World of China, 2021, 46(5): 33-38. doi: 10.12265/j.gnss.2021042101
Citation: MU Ping, LING Ming, HU Rui. Indoor location algorithm based on improved AP selection and random forest fusion[J]. GNSS World of China, 2021, 46(5): 33-38. doi: 10.12265/j.gnss.2021042101

Indoor location algorithm based on improved AP selection and random forest fusion

doi: 10.12265/j.gnss.2021042101
  • Received Date: 2021-04-21
    Available Online: 2021-11-02
  • Aiming at the problem of the received signal strength (RSS) value and dimension change in complex indoor environment, an improved access point (AP) selection method and a random forest (RF) classification algorithm for real-time indoor location are proposed. The improved AP selection method in the off-line phase uses the RSS data variance of the AP and the AP appearance frequency to measure the AP stability and selects the first m stable APs. When the variance is processed, the Laplacian smoothing is performed to avoid the variance of 0, and construct a preliminary fingerprint database. The online phase uses the RF in the integrated learning to vote on the classification result to arrive at the final position. The improved algorithm is compared with the traditional random forest, the improved AP selection fusion weighted K-nearest neighbor algorithm (WKNN) and the information gain (IG)-based AP selection algorithm plus random forest. The experimental results show that the proposed method Compared with the other three algorithms, the positioning error decreased by 29.3%, 23.2%, and 17.2%, respectively, and the positioning time is also improved.

     

  • loading
  • [1]
    GU Y Y, LO A, NIEMEGEERS I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE communications surveys and tutorials, 2009, 11(1): 13-32. DOI: 10.1109/SURV.2009.090103
    [2]
    BAHL P, PADMANABHAN V N. RADAR: an in-building RF-based user location and tracking system[C]// The 19th Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), 2020. DOI: 10.1109/INFCOM.2000.832252
    [3]
    张鹤丹. 基于WiFi技术的井下人员定位系统研究[D]. 西安: 西安建筑科技大学, 2013.
    [4]
    李新春, 侯跃. 基于改进AP选择和K最近邻法算法的室内定位技术[J]. 计算机应用, 2017, 37(11): 3276-3280, 3287.
    [5]
    罗宇锋, 候利军. 多方位分组式 WiFi 室内定位算法[J]. 传感器与微系统, 2021, 40(4): 139-141.
    [6]
    郭妍, 陈晓, 任晓晔. 一种优化随机森林模型的室内定位方法[J]. 激光杂志, 2018, 39(10): 70-74.
    [7]
    韩学法, 吴飞, 朱海, 等. 基于 GF-KF修正RSSI的室内指纹定位方法[J]. 全球定位系统, 2020, 45(3): 54-62.
    [8]
    LEE S M, KIM J, MOON N. Random forest and Wi-Fi fingerprint-based indoor location recognition system using smart watch[J]. Human-centric computing and information sciences, 2019, 9(1): 6. DOI: 10.1186/s13673-019-0168-7
    [9]
    沈阳. 基于指纹的无线室内定位中接入点选择算法研究[D]. 杭州: 浙江大学, 2014.
    [10]
    TANIUCHI D, MAEKAWA T. Robust Wi-Fi based indoor positioning with ensemble learning[C]//IEEE the 10th International Conference on Wireless and Mobile Computing, Networking and Communications, 2014. DOI: 10.1109/WiMOB.2014.6962230
    [11]
    张伟, 花向红, 邱卫宁, 等. WiFi指纹定位的一种新组合算法[J]. 测绘工程, 2017, 26(3): 14-18.
    [12]
    刘少伟, 花向红, 邱卫宁, 等. WiFi指纹定位中AP个数对定位精度的影响[J]. 测绘工程, 2017, 26(2): 33-36.
    [13]
    陈伟纲. 采用非自主部署AP的WLAN室内定位指纹库关键技术研究[D]. 广州: 华南理工大学, 2016.
    [14]
    BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5-32. DOI: 10.1023/A:1010933404324
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (425) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return