GNSS World of China

Volume 46 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
KOU Ruixiong, YANG Shuwen. QZSS broadcast ephemeris accuracy evaluation and fitting accuracy analysis[J]. GNSS World of China, 2021, 46(5): 39-47. doi: 10.12265/j.gnss.2021030906
Citation: KOU Ruixiong, YANG Shuwen. QZSS broadcast ephemeris accuracy evaluation and fitting accuracy analysis[J]. GNSS World of China, 2021, 46(5): 39-47. doi: 10.12265/j.gnss.2021030906

QZSS broadcast ephemeris accuracy evaluation and fitting accuracy analysis

doi: 10.12265/j.gnss.2021030906
  • Received Date: 2021-03-09
    Available Online: 2021-11-02
  • Broadcast ephemeris is needed to calculate the satellite position in real-time navigation and positioning. The continuous iteration is used to improve the calculation accuracy in the quasi-zenitic satellite system (QZSS) built by Japan during calculating the satellite position, which can result in the real-time calculation efficiency reduction. In order to ensure the calculation accuracy and improve the calculation efficiency of QZSS broadcast ephemeris coordinates, a chebyshev polynomial is proposed to fit the satellite orbit. Firstly, the traditional methods are used to calculate satellite position, the precision ephemeris is regarded as a reference to verify that the satellite coordinate accuracy of QZSS broadcast ephemeris is meter-level. And then, a chebyshev polynomial is used to fit satellite three-dimension coordinates, and the factors affecting the fitting accuracy are discussed. When the fitting time-interval is fixed, the optimal fitting order increases with the number of nodes; Under different time-intervals, the optimal fitting order is not equal in different orbit types, and the optimal fitting order of the same orbit is equal, but the fitting error gradually increases with the increase of time-interval. The result shows that QZSS broadcast ephemeris can be fitted by using a chebyshev polynomial and choosing appropriate fitting time-interval and fitting order for different orbit types. The fitting accuracy and computational efficiency can meet the needs.

     

  • loading
  • [1]
    夏岩, 王庆华, 宋铮, 等. 日本QZSS卫星导航系统[J]. 卫星应用, 2015(4): 40-43.
    [2]
    江永生. QZSS增强信号对GPS定位增强效果的分析[J]. 北京测绘, 2019, 33(8): 969-973.
    [3]
    布金伟, 左小清, 金立新, 等. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估[J]. 武汉大学学报(信息科学版), 2020, 45(4): 574-585, 611.
    [4]
    楼益栋, 郑福, 龚晓鹏, 等. QZSS系统在中国区域增强服务性能评估与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 298-303.
    [5]
    李振昌, 李仲勤, 寇瑞雄. 非滑动式与滑动式拉格朗日插值法在BDS精密星历内插中的比较分析[J]. 天文研究与技术, 2019, 16(1): 54-60.
    [6]
    孙华丽, 张政治, 胡思才. 五次样条插值在GPS卫星轨道标准化中的应用[J]. 大地测量与地球动力学, 2012, 32(1): 76-79.
    [7]
    仝海波, 沙海, 张国柱, 等. 一种GNSS卫星轨道高精度实时插值方法[J]. 国防科技大学学报, 2012, 34(2): 59-63. DOI: 10.3969/j.issn.1001-2486.2012.02.015
    [8]
    Quasi-Zenith Satellite System. Satellite positioning, navigation and timing service(IS-QZSS-PNT-003) [S/OL]. (2018-11-05) [2020-10-03]. https://qzss.go.jp/en/overview/services/svo4_pnt.html
    [9]
    贡冀鑫. QZSS卫星导航系统性能分析[D]. 西安: 长安大学, 2019.
    [10]
    刘磊, 盛峥, 王迎强, 等. 利用广播星历计算GPS卫星位置及误差分析[J]. 解放军理工大学学报(自然科学版), 2006, 7(6): 592-596.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(10)

    Article Metrics

    Article views (368) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return