GNSS World of China

Volume 46 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LYU Minghui, LI Wei, ZHANG Baocheng, CHAI Yanju. Refined stochastic model of combining elevation angle and SNR and its impact on precise point positioning in high latitude areas[J]. GNSS World of China, 2021, 46(3): 15-23, 53. doi: 10.12265/j.gnss.2020122101
Citation: LYU Minghui, LI Wei, ZHANG Baocheng, CHAI Yanju. Refined stochastic model of combining elevation angle and SNR and its impact on precise point positioning in high latitude areas[J]. GNSS World of China, 2021, 46(3): 15-23, 53. doi: 10.12265/j.gnss.2020122101

Refined stochastic model of combining elevation angle and SNR and its impact on precise point positioning in high latitude areas

doi: 10.12265/j.gnss.2020122101
  • Received Date: 2020-12-21
    Available Online: 2021-06-30
  • Publish Date: 2021-06-15
  • Principal component analysis method is used to determine the contribution of elevation angle and signal to noise ratio (SNR) in observation noise, and a refined Global Navigation Satellite System (GNSS) stochastic model is established based on the analysis results. The performance of the refined stochastic model is verified by using precision point positioning (PPP). It shows that the refined stochastic model leads to better positioning results in high latitude areas than traditional model that only takes into account elevation angle or SNR. The refined stochastic model is about 30% more accurate than elevation angle model, and about 20% better than SNR model. The accuracy of refined stochastic model improves most obvious in the zenith direction, and the improvements are about 38% and 24% with respect to the results of elevation angle model and SNR model, respectively. This study indicates that our new refined stochastic model is advantage to high-precision positioning accuracy in high latitude areas.

     

  • loading
  • [1]
    叶世榕. GPS非差相位精密单点定位理论与实现[D]. 武汉: 武汉大学, 2002.
    [2]
    KOUBA J, HEROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883
    [3]
    ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of geophysical research atmospheres, 1997, 102(B3): 5005-5017. DOI: 10.1029/96JB03860
    [4]
    戴吾蛟, 丁晓利, 朱建军. 基于观测值质量指标的GPS观测量随机模型分析[J]. 武汉大学学报(信息科学版), 2008, 33(7): 718-722.
    [5]
    刘志强, 黄张裕, 金建平. 利用卫星高度角和信噪比提高GPS定位精度的试验分析[J]. 测绘工程, 2008, 17(4): 54-58. DOI: 10.3969/j.issn.1006-7949.2008.04.015
    [6]
    王郁茗, 邵利民, 张尚悦. 顾及海面多路径的PPP自适应选权随机模型[J]. 测绘科学, 2019, 44(12): 35-41, 66.
    [7]
    潘宇明, 郭博峰, 丁乐乐, 等. 一种自适应伪距-相位比的精密单点定位随机模型方法[J]. 测绘地理信息, 2019, 44(5): 73-77.
    [8]
    赵刚, 于先文, 孙璞玉. 一种顾及对流层残余延迟的GNSS随机建模方法[J]. 测绘科学, 2020, 45(7): 56-61.
    [9]
    李征航, 张小红. 卫星导航定位新技术及高精度数据处理方法[M]. 武汉: 武汉大学出版社, 2009.
    [10]
    刘云朋, 尹潇, 楼立志. 高度角信噪比联合随机模型的抗差GPS/COMPASS实时差分定位算法分析[J]. 大地测量与地球动力学, 2014, 34(4): 145-148.
    [11]
    杨徐, 徐爱功, 秦小茜, 等. 高度角定权模型的BDS/GPS伪距单点定位分析[J]. 导航定位学报, 2017, 5(2): 77-78, 85.
    [12]
    范士杰, 刘焱雄, 高兴国, 等. 海上动态GPS大气可降水量信息反演[J]. 中国石油大学学报(自然科学版), 2012, 36(3): 84-87, 92.
    [13]
    JIN S G, WANG J L. Impacts of stochastic modeling on GPS-derived ZTD estimations [C/OL]//The 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (IONGNSS); Long Beach, CA, USA, 2010: 941-946. https://arxiv.org/ftp/arxiv/papers/1010/1010.1891.pdf
    [14]
    BRUNNER F K, HARTINGER H, TROYER L. GPS signal diffraction modelling: the stochastic sigma-δ model[J]. Journal of geodesy, 1999, 73(5): 259-267. DOI: 10.1007/s001900050242
    [15]
    郭斐. GPS精密单点定位质量控制与分析的相关理论和方法研究[M]. 武汉: 武汉大学出版社, 2016.
    [16]
    尹子明, 孟凡玉, 陈明剑, 等. 卫星导航数据质量分析[J]. 全球定位系统, 2016, 41(1): 54-59.
    [17]
    JOHNSON R A, WICHEN D W. 实用多元统计分析[M]. 北京: 清华大学出版社, 2008.
    [18]
    FUKUNAGA K. Introduction to statistical pattern recognition[M]. Academic Press, 1990.
    [19]
    林海明, 杜子芳. 主成分分析综合评价应该注意的问题[J]. 统计研究, 2013, 30(8): 25-31. DOI: 10.3969/j.issn.1002-4565.2013.08.004
    [20]
    任雪松, 于秀林. 多元统计分析[M]. 第2版. 北京: 中国统计出版社, 2016.
    [21]
    张冲. 鲁棒主成分分析及其应用[D]. 西安: 西安电子科技大学, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (625) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return