GNSS World of China

Volume 46 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
CUI Zhiying, YUE Fuzhan, TIAN Run, ZHANG Shuangna. Research on positioning technology based on Iridium burst signal[J]. GNSS World of China, 2021, 46(2): 77-85. doi: 10.12265/j.gnss.2020121503
Citation: CUI Zhiying, YUE Fuzhan, TIAN Run, ZHANG Shuangna. Research on positioning technology based on Iridium burst signal[J]. GNSS World of China, 2021, 46(2): 77-85. doi: 10.12265/j.gnss.2020121503

Research on positioning technology based on Iridium burst signal

doi: 10.12265/j.gnss.2020121503
  • Received Date: 2020-12-15
    Available Online: 2021-04-28
  • Publish Date: 2021-05-13
  • Global Navigation Satellite System (GNSS) has weak landing signal and is vulnerable to interference, etc., while low-orbit satellite system has gradually become a research hotspot in the navigation field due to its high landing power, low signal space loss and good Doppler characteristics. Iridium is the only low orbit satellite system that has achieved global coverage. Its satellite time and location(STL) capabilities are mainly for the US military. The specific signal system and processing technology have not been publicly released. Through in-depth study and analysis of Iridium STL burst signal system, this paper proposes to realize non-cooperative navigation and positioning by using STL burst signal, and completes the verification of positioning algorithm by receiving STL burst signal. The result shows that the proposed algorithm can achieve positioning accuracy better than 100 m. The research results can provide a theoretical basis for the construction of China’s low-orbit navigation system and effectively promote the sustainable development of the next generation of satellite navigation system.

     

  • loading
  • [1]
    ZHAO Y. Brief probe on application of compass navigation satellite system in the fields of sea, land and air[C]//2017 2nd International Conference on Materials Science, Machinery and Energy Engineering(MSMEE 2017), 2017: 212-217. DOI: 10.2991/msmee-17.2017.329
    [2]
    ENGE P, WALTER T, PULLEN S, et al. Wide area augmentation of the global positioning system[J]. Proceedings of the IEEE, 1996, 84(8): 1063-1088. DOI: 10.1109/5.533954
    [3]
    杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510. DOI: 10.11947/j.AGCS.2016.20160127
    [4]
    LAWRENCE D, COBB H S, GUTT G, et al. Test results from a LEO-satellite-based assured time and location[C]//2016 International Technical Meeting of the Institute of Navigation, 2016: 125-129. DOI: 10.33012/2016.13416
    [5]
    LEMME P W; GLENISTER S M, MILLER A W. Iridium(R) aeronautical satellite communications[J]. IEEE aerosp and electronic systtems magazine[J]. 1999, 14(11): 11-16. DOI: 10.1109/62.809197
    [6]
    Satelles Time and Location Signals [EB/OL]. [2020-12-10]. https://satelles.com/wp-content/uploads/pdf/Satelles-White-Paper-2019.pdf
    [7]
    LI B F, GE H B, GE M R, et al. LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services[J]. Advances in space research, 2018, 63(1): 2 942-2 954. DOI: 10.1016/j.asr.2018.08.017
    [8]
    郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展[J]. 全球定位系统, 2019, 44(2): 1-12.
    [9]
    GUO S R, CAI H L, YI N M, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta geodaetica et cartographica sinica, 2019, 48(7): 810-821. DOI: 10.11947/j.AGCS.2019.20190091
    [10]
    LI D R, SHEN X, LI D L, et al. On civil-military integrated space based real-time information service system[J]. Geomatics and information science of wuhan university, 2017, 42(11): 1501-1505. DOI: 10.13203/j.whugis20170227
    [11]
    FAN S Y, ZHAO L J, XIAO W J, et al. Performance analysis and simulation of Iridium navigation satellite based on STK[C]//2012 Second International Workshop on Earth Observation and Remote Sensing Applications, 2012. DOI: 10.1109/EORSA.2012.6261185
    [12]
    GUTT G, LAWRENCE D, COBB S, et al, Recent PNT improvements and test results based on low earth orbit satellites[C]//2018 International Technical Meeting of The Institute of Navigation. DOI: 10.33012/2018.15586
    [13]
    杨波. 低轨卫星增强导航技术研究[D]. 成都: 电子科技大学, 2017.
    [14]
    WANG L, CHEN R Z, XU B Z, et al. The challenges of LEO based navigation augmentation system—lessons learned from luojia-1A satellite[C]//China Satellite Navigation Conference (CSNC) 2019 Proceedings, 2019: 298-310. DOI: 10.1007/978-981-13-7759-4_27
    [15]
    John Pratt, Penina. Axelrad Recent PNT Improvements and Test Results Based on Low Earth Orbit Satellites[C/OL]. Proceedings of the 49th Annual Precise Time and Time Interval Systems and Applications Meeting, 2018(1): 72-79. https://www.ion.org/publications/abstract.cfm?articlelD:15606
    [16]
    LAWRENCE D, COBB H S, GUTT G, et al. Test results from a LEO-satellite-based assured time and location solution[C]//2016 International Technical Meeting of The Institute of Navigation, 2016: 125-129. DOI: 10.33012/2016.13416
    [17]
    LI D R, SHEN X, GONG J Y, et al. On construction of China’s space information network[J]. Geomatics and information science of wuhan university, 2015, 40(6): 711-715. DOI: 10.13203/j.whugis20150021
    [18]
    TAN Z Z, QIN H L, CONG L, et al. New method for positioning using IRIDIUM satellite signals of opportunity[J]. IEEE access, 2019(7): 83412-83423. DOI: 10.1109/ACCESS.2019.2924470
    [19]
    REID T, NEISH A, WALTER T, et al. Leveraging commercial broadband LEO constellations for navigation[C]// The 29th International Technical Meeting of the Satellite Division of The Institute of Navigation, 2016. DOI: 10.33012/2016.14729
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (1299) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return