GNSS World of China

Volume 46 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
MENG Junjian, ZOU Jingui, ZHAO Yinzhi. Fingerprint positioning method of CSI based on PCA-SMO[J]. GNSS World of China, 2021, 46(1): 13-19. doi: 10.12265/j.gnss.2020111301
Citation: MENG Junjian, ZOU Jingui, ZHAO Yinzhi. Fingerprint positioning method of CSI based on PCA-SMO[J]. GNSS World of China, 2021, 46(1): 13-19. doi: 10.12265/j.gnss.2020111301

Fingerprint positioning method of CSI based on PCA-SMO

doi: 10.12265/j.gnss.2020111301
  • Received Date: 2020-11-13
    Available Online: 2021-04-06
  • Publish Date: 2021-02-15
  • Wi-Fi channel state information (CSI) contains rich feature information, which enables CSI based fingerprint positioning methods to build higher-dimensional features to improve positioning accuracy. However, the redundant information in the fingerprint features also makes the built-up fingerprint database large in storage, and increasing of the time cost of establishing the positioning model becomes large, and the real-time positioning calculation. In this regard, this paper proposes to use principal component analysis (PCA) method to reduce the dimensionality of the original fingerprint features, and then use the sequential minimal optimization (SMO) algorithm to establish the regression model of the reduced feature and the corresponding position and predict the position. The experimental results show that the algorithm in this paper can effectively overcome the above problems, while the average positioning error is 1.25 m, and the cumulative probability of positioning error within 2 m can reach 97%.

     

  • loading
  • [1]
    陈锐志, 陈亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10): 1316-1326. DOI: 10.11947/j.AGCS.2017.20170383
    [2]
    DAVIDSON P, PICHÉ A. survey of selected indoor positioning methods for smartphones[J]. IEEE communications surveys and tutorials, 2017, 19(2): 1347-1370. DOI: 10.1109/COMST.2016.2637663.
    [3]
    ZHANG R, BANNOURA A, HÖFLINGER F, et al. Indoor localization using a smart phone[C]//2013 IEEE Sensors Applications Symposium Proceedings. DOI: 10.1109/SAS.2013.6493553.
    [4]
    李清泉, 周宝定, 马威, 等. GIS辅助的室内定位技术研究进展[J]. 测绘学报, 2019, 48(12): 1498-1506.
    [5]
    ZHANG M, SHEN W B, ZHU J H. WIFI and magnetic fingerprint positioning algorithm based on KDA-KNN[C]//2016 Chinese Control and Decision Conference (CCDC). DOI: 10.1109/CCDC.2016.7531964.
    [6]
    JEDARI E, WU Z, RASHIDZADEH R, et al. Wi-Fi based indoor location positioning employing random forest classifier[C]//2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN). DOI: 10.1109/IPIN.2015.7346754.
    [7]
    KIM Y, SHIN H, CHON Y, et al. Smartphone-based Wi-Fi tracking system exploiting the RSS peak to overcome the RSS variance problem[J]. Pervasive and mobile computing, 2013, 9(3): 406-420. DOI: 10.1016/j.pmcj.2012.12.003.
    [8]
    SEN S, RADUNOVIĆ B, CHOUDHURY R R, et al. You are facing the Mona Lisa: spot localization using PHY layer information[C]//In MobiSys'12-Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, 2012: 183-196. DOI: 10.1145/2307636.2307654.
    [9]
    HOEFEL R P F. IEEE 802.11n: on the performance of channel estimation schemes over OFDM MIMO spatially correlated frequency selective fading TGn channels[C]//XXX Simpósio Brasileiro De Telecomuniçães-Sbrt12, 13-16 De Setembro De 2012, Braslia, Df, Brazil. DOI: 10.14209/sbrt.2012.12.
    [10]
    HAN S, LI Y, MENG W X, et al. Indoor localization with a single Wi-Fi access point based on OFDM-MIMO[J]. IEEE systems journal, 2018, 13(1): 964-972. DOI: 10.1109/JSYST.2018.2823358.
    [11]
    鄢明. 基于CSI指纹信息的室内定位技术研究[D]. 南京: 南京大学, 2017.
    [12]
    WU K S, XIAO J, YI Y W, et al. FILA: fine-grained indoor localization[C]//2012 Proceedings IEEE INFOCOM, DOI: 10.1109/INFCOM.2012.6195606.
    [13]
    HUANG X D, GUO S J, WU Y, et al. A fine-grained indoor fingerprinting localization based on magnetic field strength and channel state information[J]. Pervasive and mobile computing, 2017(41): 150-165. DOI: 10.1016/j.pmcj.2017.08.003.
    [14]
    WANG X Y, GAO L J, MAO S W, et al. DeepFi: Deep learning for indoor fingerprinting using channel state information[C]//2015 IEEE Wireless Communications and Networking Conference (WCNC). DOI: 10.1109/WCNC.2015.7127718.
    [15]
    陈锐志, 叶锋. 基于Wi-Fi信道状态信息的室内定位技术现状综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2064-2070.
    [16]
    王威. PDR+CSI指纹室内定位技术研究[D]. 武汉: 武汉大学, 2019.
    [17]
    刘兆岩, 陈立伟, 黄璐. 基于CSI相位矫正的室内指纹定位技术研究[J]. 无线电工程, 2020(2): 102-107. DOI: 10.3969/j.issn.1003-3106.2020.02.004
    [18]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
    [19]
    HALPERIN D C, HU W J, SHETH A, et al. Tool release: gathering 802.11n traces with channel state information[J]. ACM SIGCOMM computer communication review, 2011, 41(1): 53. DOI: 10.1145/1925861.1925870.
    [20]
    XIAO J, WU K S, YI Y W, et al. FIFS: fine-grained indoor fingerprinting system[C]//Computer Communications and Networks, 2012. DOI: 10.1109/ICCCN.2012.6289200.
    [21]
    CHAPRE Y, IGNJATOVIĆ A, SENEVIRATNE A, et al. CSI-MIMO: indoor Wi-Fi fingerprinting system[C]//2014 IEEE 39th Conference on Local Computer Networks, IEEE, 2014: 202-209. DOI: 10.1109/LCN.2014.6925773.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (671) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return