GNSS World of China

Volume 46 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LU Jiawei, XU Zhe. Visual inertial positioning method based on tight coupling[J]. GNSS World of China, 2021, 46(1): 36-42. doi: 10.12265/j.gnss.2020082801
Citation: LU Jiawei, XU Zhe. Visual inertial positioning method based on tight coupling[J]. GNSS World of China, 2021, 46(1): 36-42. doi: 10.12265/j.gnss.2020082801

Visual inertial positioning method based on tight coupling

doi: 10.12265/j.gnss.2020082801
  • Received Date: 2020-08-28
    Available Online: 2021-04-06
  • Publish Date: 2021-02-15
  • The inertial measurement unit (IMU) is disturbed by its own temperature, bias, vibration and other factors, so the pose is easy to diverge when integrating, and the monocular vision positioning accuracy is poor when the robot moves rapidly. Therefore, this paper studies a visual inertial synchronous simultaneous localization and mapping (SLAM) method based on tight coupling. Firstly, the location problem of visualodometry (VO) is studied. In order to reduce the mismatching of feature points, the feature points extraction method based on Oriented FAST and Rotated BRIEF (ORB) is adopted. Then the mathematical model of IMU is constructed, and the discrete integral of the motion model is obtained by using the median method. Finally, the pose of monocular vision is aligned with IMU trajectory, and the optimal state estimation of robot motion is obtained by nonlinear optimization based on sliding window. The two experiments were verified by constructing the simulation scene ard comparing with the monocular ORB-SLAM algorithm. The results show that the proposed method is better than visual odometer alone, and the positioning accuracy is controlled at about 0.4 m, which is 30% higher than the traditional tracking model.

     

  • loading
  • [1]
    GUI J J, GU D B, WANG H S, et al. A review of visual inertial odometry from filtering and optimisation perspectives[J]. Advanced robotics, 2015, 29(20): 1289-1301. DOI: 10.1080/01691864.2015.1057616.
    [2]
    WEISS S, SIEGWART R. Real-time metric state estimation for modular vision-inertial systems[C]//2011 IEEE International Conference on Robotics and Automation, 2011. DOI: 10.1109/ICRA.2011.5979982.
    [3]
    WEISS S, ACHTELIK M W, LYNEN S, et al. Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments[C]//2012 IEEE International Conference on Robotics and Automation, 2012. DOI: 10.1109/ICRA.2012.6225147.
    [4]
    MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007. DOI: 10.1109/ROBOT.2007.364024.
    [5]
    LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The international journal of robotics research, 2014, 34(3): 314-334. DOI: 10.1177/0278364914554813.
    [6]
    QIN T, LI P, SHEN S. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE transactions on robotics, 2018, 34(4): 1004-1020. DOI: 10.1109/TRO.2018.2853729.
    [7]
    陈小宁, 黄玉清, 杨佳. 多传感器信息融合在移动机器人定位中的应用[J]. 传感器与微系统, 2008, 27(6): 110-113. DOI: 10.3969/j.issn.1000-9787.2008.06.035
    [8]
    褚辉, 李长勇, 杨凯, 等. 多信息融合的物流机器人定位与导航算法的研究[J]. 机械设计与制造, 2019(4): 240-243. DOI: 10.3969/j.issn.1001-3997.2019.04.059
    [9]
    MUR-ARTAL, TARDOS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255-1262. DOI: 10.1109/TRO.2017.2705103.
    [10]
    罗文超, 刘国栋, 杨海燕. SIFT和改进的RANSAC算法在图像配准中的应用[J]. 计算机工程与应用, 2013, 49(15): 147-149. DOI: 10.3778/j.issn.1002-8331.1112-0200
    [11]
    MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[J]. Proceedings of the 33rd international conference on machine learning, 2016, 48: 1928-1937.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (617) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return