Forestland extraction method of hyperspectral image combined with multi-feature HSV transform
-
摘要: 当前林地提取的方式主要是选择样本通过监督或半监督进行的,效率较低,为此本文提出一种结合多特征的HSV变换高光谱影像林地提取方法.该方法首先对原影像进行相关校正处理,然后利用归一化植被指数(NDVI)和主成分分析(PCA)得到合成影像,最后利用HSV变换通过设置色彩值范围对影像进行色彩分割提取林地信息.结果显示,使用本文方法对高光谱林地的提取精度可以达到96.29%,说明了本文方法的有效性.Abstract: At present, the method of extraction forestland is mainly based on selecting samples by supervised or semi-supervised, and the efficiency is low. For this reason, this paper proposes a multi-feature HSV transform hyperspectral image forestland extraction method. We first performs relation correction processing of original remote sensing images.Then use the parameters of normalized vegetation index (NDVI) and principal component analysis (PCA) to obtain the composite images. Finally, HSV transform is used to extract forest land information through color segmentation of image by setting color value range. The results show that the extraction accuracy of the high-resolution forestland can reach 96.29%, and indicated the effectiveness of the method.
-
Key words:
- multiple features /
- HSV transform /
- hyperspectral image /
- NDVI and PCA /
- color segmentation /
- forestland extraction
-
[1] 秦昌波, 苏洁琼, 王倩, 等. “绿水青山就是金山银山”理论实践政策机制研究[J]. 环境科学研究,2018, 31(6): 985-990. [2] SAGALOVICH V N, FALKOV E Y A, TSAREVA T I. Estimation of chlorophyll content in plant leaves and canopy from hyperspectral vegetation indexes[J]. Issledovanie zemliiz kosmosa, 2002(6): 81-85. [3] SAGALOVICH V N, FALKOV E Y, TZAREVA T I. Estimation of water content in vegetation from hyperspectral vegetation indices[J]. Issledovanie zemli iz kosmosa, 2004(1): 63-67. [4] KEMPENEER P, DE BACKER S, DEBRUYN W, et al. Generic waveletbased hyperspectral classification applied to vegetation stress detection[J]. IEEE transactions on geoscience and remote sensing, 2005, 43(3): 610-614. DOI: 10.1109/TGRS.2004.839545. [5] 廖克, 成夕芳, 吴健生. 高分辨率卫星遥感影像在土地利用变化动态监测中的应用[J]. 测绘科学, 2006, 31 (6): 11-15. [6] HUGHES G. On the mean accuracy of statistical [JP]pattern recognizers[J].IEEE transactions on information theory, 1968, 14(1): 55-63. DOI: 10.1109/TIT.1968.1054102. [7] ELVIDGE C D, CHEN Z K. Comparison of broad-band and narrow-band red and near-infrared vegetation indices[J]. Remote sensing of environment, 1995, 54(1): 38-48. DOI: 10.1016/0034-4257(95)00132-K. [8] 李海涛, 顾海燕, 张兵, 等. 基于MNF 和SVM 的高光谱遥感影像分类研究[J].遥感信息, 2007 (5):12-15,25. [9] 薛云, 戴塔根, 陈水森, 等.基于光谱相似尺度的SVM荔枝信息提取——以增城市中新镇为例[J]. 广东农业科学,2007(10): 106-109. [10] 宋荣杰, 宁纪锋, 刘秀英,等. 基于纹理特征和SVM的QuickBird影像苹果园提取[J].农业机械学报, 2017, 48(3): 188-197. [11] 李丹, 陈水森, 陈修治. 高光谱遥感数据植被信息提取方法[J].农业工程学报, 2010, 26(7): 181-185. [12] 付秀丽, 黎玲萍, 毛克彪, 等. 基于卷积神经网络模型的遥感图像分类[J]. 计算机与通信技术,2017, 27(3): 203-212. [13] SHARMA A, LIU X W, YANG X J, et al. A patchbased convolutional neural network for remote sensing image classification[J]. Neural networks,2017(95):19-28. DOI:10.1016/j.neunet.2017.07. 017. [14] 吕飞, 韩敏. 基于深度极限学习机的高光谱遥感影像分类研究[J]. 大连理工大学学报, 2018, 58(2): 166-173. [15] 戚玉娇, 李凤日. 基于KNN 方法的大兴安岭地区森林地上碳储量遥感估算[J]. 林业科学, 2015, 51(5): 46-55. [16] 于宁锋, 杨化超.一种用于高光谱遥感影像分类的改进多支持向量机[J].遥感信息, 2007, 29(5): 7-11. [17] 王利军, 郭燕, 贺佳, 等. 基于决策树和SVM的Sentinel2A影像作物提取方法[J]. 农业机械学报, 2018, 49(9): 146-153. [18] 王传立, 张晓芳, 唐鼐, 等. 基于多核极限学习机的遥感影像林地信息提取[J]. 中南林业科技大学学报, 2018, 38(9): 20-25. [19] 韦玮, 李增元. 基于高光谱影像融合的湿地植被类型信息提取技术研究[J]. 林业科学研究, 2011, 24(3): 300-306. [20] [粟娟, 廖绍波, 梁家强, 等. 珠海市城市森林的总体布局与植物组成[J]. 林业科学研究, 2002, 15(3): 310-316. [21] ROUSE J W,HAAS R H,SCHELL J A,et al. Monitoring vegetation systems in the great plains with ERTS[C]//3rd Earth Resource Technolgy Satellite(ERTS) Symposium NASA Goddard Space Flight Center, 1974,48(1):309-317.
点击查看大图
计量
- 文章访问数: 286
- HTML全文浏览量: 63
- PDF下载量: 47
- 被引次数: 0