Positioning performance analysis of a low-cost μ-blox single-frequency multi-GNSS receiver
-
摘要: 随着大众市场对高精度定位需求增加,基于低成本小型化设备的全球卫星导航系统(GNSS)高精度定位成为研究热点之一. 本文以低成本多系统GNSS接收机μ-blox M8P型号为例,分析其观测数据质量,研究其伪距单点定位和单频载波相对定位的定位性能和特点,为低成本GNSS接收机高精度定位应用提供参考. 实验结果表明,与测量型接收机相比,μ-blox输出GNSS观测值的载噪比略小,伪距和载波相位的测量噪声较大. 静态模式下,μ-blox的单频载波相对定位(基线长度约为430 m)可以提供厘米级的定位精度;城市环境动态模式下,其单频载波相对定位可提供亚米级至米级的定位精度. 信号受限环境下,GPS/GLONASS双系统能够提供更稳定的定位结果.
-
关键词:
- GNSS /
- 单频 /
- 低成本μ-blox接收机 /
- 数据质量分析 /
- 高精度定位
Abstract: In recent years, high precision positioning of low-cost miniaturized GNSS receiver has been a hot topic on account of the big surge of high precision positioning in mass market. In this paper, we analyse the quality of GNSS observations and evaluate the positioning performance of a new low-cost, single frequency, multi-GNSS receiver μ-blox M8P in different scenarios with different processing strategies, providing reference for high precision positioning of low-cost GNSS receiver. The experimental results show that the carrier to noise ratio of GNSS observations of μ-blox is lower than that of geodetic receiver and the pseudorange and carrier phase noise are higher. In static mode the low-cost GNSS receiver can achieve a high performance with a precision of centimeter level from short baseline relative positioning. In dynamic urban vehicle test the low-cost GNSS receiver can provide a precision of sub-meter to meter level with short baseline relative positioning. In a signal-constrained environment, the GPS/GLONASS combined positioning can provide more stable results.-
Key words:
- GNSS /
- single frequency /
- low-cost μ-blox receiver /
- data quality analysis /
- high precision positioning
-
[1] 邹璇. GNSS单频接收机精密点定位统一性方法的研究[D]. 武汉:武汉大学, 2010. [2] 辛星,崔有祯,李继林,等. 一种BDS/GPS接收机单频定位精度分析[J]. 测绘科学. 2016, 41(2): 34-38. [3] 谢松,张建伟. GPS/BDS双系统高精度接收机设计方法[J]. 电子技术与软件工程. 2016(14): 39-41. [4] VERHAGEN S, ODIJK D, TEUNISSEN P J G, et al. Performance improvement with lowcost multiGNSS receivers[C]//2015 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, 2010.DOI:10.1109/NAVITEC. 2010.5708015. [5] CINA A, PIRAS M. Performance of low-cost GNSS receiver for landslides monitoring: test and results[J]. Geomatics, Natural Hazards and Risk. 2014, 6(5-7): 497-514. DOI: 10.1080/19475705.2014.889046. [6] STEMPFHUBER W, BUCHHOLZ M. A precise, low-cost RTK GNSS system for UAN applications[J]. ISPRSInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2011, XXXVIII-1/C22(1):289-293. DOI:10.5194/inprsar chives-XXXV111-1-C22-289-2011. [7] ODOLINSKI R, TEUNISSEN P J G. Low-cost, high-precision, single-frequency GPS-BDS RTK positioning[J]. GPS Solutions. 2017, 21(3):1315-1330. [8] 李征航,黄劲松. GPS测量与数据处理[M]. 武汉:武汉大学出版社, 2005. [9] HAUSCHILD A, MONTENBRUCK, SLEEWAEGEN J M, et al. Characterization of compass M-1 signals[J]. GPS Solutions, 2012, 16(1):117-126. DOI:10.1007/S10291-0110210-3. [10] LEE Y H, CHIANG K W. The performance analysis of a 3d map embedded ins/gps fusion algorithm for seamless vehicular navigation in elevated highway environments[J]. ISPRSInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIXB1(1):491-496.DOI: 10.5194/isprsarchives-XXX1X-B1-4912012. [11] DE BAKKER P F, SAMSON J, JOOSTEN P, et al. Effect of radio frequency interference on GNSS receiver output[C]//ESA workshop on satellite navigation user equipment technologies NAVITEC, ESA/ESTEC, Noordwijk (NL). 2006. DOI: 10.13140/2.1.1355.7763.
点击查看大图
计量
- 文章访问数: 480
- HTML全文浏览量: 57
- PDF下载量: 159
- 被引次数: 0