Aerial UAV kinematic positioning using combined GPS/BDS system
-
摘要: 由于定位定向系统(POS)可直接获取航摄像片线元素与角元素,减少航测内外业工作量,提高航测作业的效率,无人机摄影测量已成为航空摄影测量的重要方式.常规实时动态(RTK)产品重量较大,难以应用于荷载有限的微小型无人机的POS系统.本文基于Doppler值修正伪距观测量,并联合平滑伪距与相位观测量实现无人机动态后处理定位(PPK).实测数据结果表明,较之单系统,全球定位系统/北斗卫星导航系统(GPS/BDS)组合系统可充分满足无人机动态定位的精度需求,结合平滑伪距与相位观测量可改善PPK定位的精度与可靠性.Abstract: Position and orientation system (POS) can acquire the line and angle elements of the aerial photographs directly, which can reduce the workload of unmanned aerial vehicle photogrammetry and improve work efficiency, thus the UAV photogrammetry has become an important way of data acquisition in aerial photogrammetry. For the large quality of conventional RTK products, it is difficult to be applied in the UAV surveying. In this paper, Doppler smoothing algorithm has been adopted to refine code observables, and then the combined Doppler-smoothed code (DSC) and phase data have been used to realize UAV post processed kinematic positioning (PPK). The results of measured data have shown that,compared with single satellite system, the combined GPS/BDS system can meet the requirement of kinematic positioning for UAV photogrammetry, and the efficiency and reliability of PPK positioning can be improved based on the DSC and phase observables.
-
Key words:
- GPS /
- BDS /
- UAV /
- Doppler /
- kinematic positioning
-
[1] BERNI J, ZARCO-TEJADA P J, SUAREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738. DOI: 10.1109/TGRS.2008.2010457. [2] WATTS A C, AMBROSIA V G, HINKLEY E A. Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use [J]. Remote Sensing, 2012,4(6): 1671-1692. DOI: 10.3390/rs4061671. [3] 李德仁, 龚健雅, 邵振峰. 从数字地球到智慧地球[J]. 武汉大学学报(信息科学版), 2010, 35(2): 127-132. [4] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505-513,540. [5] HWANG D H, OH S H, LEE S J, et al. Design of A low-cost attitude determination GPS/INS integrated navigation system[J]. GPS Solutions, 2005, 9(4): 294-311. DOI: 10.1007/s10291-005-0135-9. [6] 袁修孝. 当代航空摄影测量加密的几种方法[J]. 武汉大学学报(信息科学版), 2007, 32(11): 1001-1006. [7] 李哲, 高立, 乔辉. GPS PPK技术在测量外业中的应用探讨[J]. 测绘与空间地理信息, 2012, 35(5): 120-121. [8] 邱志刚,黄纪晨. 基于PPK算法的微型GNSS在航测无人机上的应用[J]. 测绘与空间地理信息, 2018, 41(8): 206-209. [9] GAO X W, GUO J J, CHENG P F, et al. Fusion positioning of BeiDou/GPS based on spatio temporal system unification [J]. Acta Geodaetica Et Cartographica Sinica, 2012, 41(5):743-742.DOI: 10.1007/s11783-011-0280-z. [10] WANG S J,BEI J Z,LI D H., et al. Real-time kinematic positioning algorithm of GPS/BDS [J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):621-625. DOI: 10.13203/j.whugis20120139. [11] 高晓, 杨志强, 宋志勇,等. 相位单差残差评估北斗区域导航系统载波相位观测量质量[J]. 测绘科学技术学报, 2017, 34(1):19-23. [12] 许国昌. GPS理论、算法与应用[M]. 2版.北京:清华大学出版社, 2011. [13] 陈源军. 顾及历元间坐标差信息的GPS动态定位算法研究[D]. 长沙:中南大学, 2015. [14] 刘万科, 丁文武, 李征航. 单频GPS静态定向中整周模糊度的快速解算[J]. 测绘地理信息, 2007, 32(6):3-5. [15] HOFMANNWELLEMHOF B, LICHTENEGGER H, [JP]WASLE E. GNSSglobal navigation stellate systems (GPS, GLONASS, Galileo and more) [M].NewYork Springer Verlag, 2008: 80-82. DOI: 10.1007/978-3-211-73017-1. [16] ZHOU Z B, LI B F. Optimal Doppler-aided smoothing strategy for GNSS navigation [J]. GPS Solutions, 2017, 21(1): 197-210. DOI: 10.1007/s10291-015-0512-y. [17] ZHOU Z B, LI B F. GNSS windowing navigation with adaptively constructed dynamic model [J]. GPS Solutions, 2015, 19(1): 37-48. DOI: 10.1007/s10291-014-0363-y.
点击查看大图
计量
- 文章访问数: 478
- HTML全文浏览量: 78
- PDF下载量: 136
- 被引次数: 0