GNSS ambiguity integer estimation methods graph visualization software design and application analysis
-
摘要: 模糊度快速准确估计是全球卫星导航系统(GNSS)高精度定位的关键,整数取整、序贯取整和整数最小二乘估计是模糊度常用的三类整数估计方法.尽管从程序上较易实现三类估计方法,但是如何根据模糊度浮点解和精度构建整数估值的几何图形却缺乏较多的研究,不利于我们对整数估计过程的直观认知.因此,本文从理论上分别给出三类估计方法的一般形式,然后基于MATLAB GUI设计了一套三类估计方法二维几何图形构建的可视化分析软件,其功能包括三类估计方法的归整域构建、映射图构建和蒙特卡洛模拟及成功率计算.实验测试结果表明,本文设计的软件能够从几何图形角度较直观地表达出三类整数估计过程及其解算性能.
-
关键词:
- GNSS /
- 整周模糊度解算 /
- 整数估计 /
- MATLAB GUI /
- 几何图形构建
Abstract: The key of high-precision GNSS positioning is fast and accurate ambiguity estimation.There are three kinds of integer estimation methods which are commonly used for ambiguity estimation,including Integer Rounding, Integer Bootstrapping and Integer Least-Squares.Although it is easy to realize the three kinds of estimation methods, there is little research on how to construct the geometry of integer estimate values based on the ambiguity float solution and precision,which is not conducive for us to intuitively understand the process of integer estimation.Therefore, this paper theoretically gives the general forms of the three kinds of estimation methods, and then designs a set of visualization analysis software for the construction of two-dimensional geometric figures based on MATLAB GUI. The functions of the software include pull-in region construction, map graph construction, Monte Carlo simulation and success rate calculation. The experimental results show that the software designed in this paper can intuitively express the processes of the three kinds of integer estimation and its resolution performance in terms of geometry.-
Key words:
- GNSS /
- integer ambiguity resolution /
- integer estimation /
- MATLAB GUI /
- geometric figures construction
-
[1] 刘经南, 于兴旺, 张小红. 基于格论的GNSS模糊度解算[J]. 测绘学报, 2012, 41(5): 636-645. [2] 卢立果. GNSS整数最小二乘模糊度解算理论与方法研究[J]. 测绘学报,2017,46(19):1204. [3] 王建敏, 李亚博, 马天明, 等. 大范围网络RTK基准站间整周模糊度实时快速解算[J]. 测绘通报, 2017(10): 7-11. [4] 祝会忠, 李军, 蔚泽然, 等. 长距离GPS/BDS参考站网多频载波相位整周模糊度解算方法[J]. 测绘学报, 2020, 49(3): 300-311. [5] TEUNISSEN P J G. On the integer normal distribution of the GPS ambiguities[J/OL]. Artificial satellites, 1998, 33(2):49-64.http://hdl.handle.net/20.500.11937/39304. [6] TEUNISSEN P J G. Towards a unified theory of GNSS ambiguity resolution[J/OL]. Journal of global positioning systems, 2003, 2(1): 1-12.http://file.scrip.org/pdf/nav20090100011_34702736.pdf. [7] VERHAGEN S, LI B F, TEUNISSEN P J G. Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications[J]. Computers & geosciences, 2013, 54: 361-376.DOI: 10.1016/J.CAGEO.2013.01.014. [8] 刘经南, 邓辰龙, 唐卫明. GNSS整周模糊度确认理论方法研究进展[J]. 武汉大学学报(信息科学版), 2014(9): 1-3. [9] 吴泽民, 边少锋, 向才炳, 等. 三种GNSS模糊度解算方法成功率比较[J]. 海洋测绘, 2014, 34(6):25-28. [10] 宋福成. GNSS整周模糊度估计方法研究[D]. 北京:中国矿业大学(北京), 2016. [11] VERHAGEN S, LI B F. LAMBDA software package: MATLAB implementation, version 3.0[S/OL]. https://www.researchgate.net/publication/236213370_LAMBDA_Software_package_Matlab_implementation_Version_30. [12] TEUNISSEN P J G. Success probability of integer GPS ambiguity rounding and bootstrapping[J]. Journal of geodesy, 1998, 72(10): 606-612.DOI: 10.1007/s001900050199. [13] TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation[J]. Journal of geodesy, 1995(70): 65-82.DOI: 10.1007/BF00863419. [14] TEUNISSEN P J G. An optimality property of the integer leastsquares estimator[J]. Journal of geodesy, 1999, 73(11): 587-593.DOI: 10.1007/s001900050269.
点击查看大图
计量
- 文章访问数: 573
- HTML全文浏览量: 112
- PDF下载量: 31
- 被引次数: 0