• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台

改进的多项式+周期项模型的卫星钟差预报

廖建发, 张艳兵

廖建发, 张艳兵. 改进的多项式+周期项模型的卫星钟差预报[J]. 全球定位系统, 2018, 43(1): 91-95. DOI: 10.13442/j.gnss.1008-9268.2018.01.017
引用本文: 廖建发, 张艳兵. 改进的多项式+周期项模型的卫星钟差预报[J]. 全球定位系统, 2018, 43(1): 91-95. DOI: 10.13442/j.gnss.1008-9268.2018.01.017
LIAO Jianfa, ZHANG Yanbing. Satellite Clock Error Prediction of Improved Polynomial and Periodic Mode[J]. GNSS World of China, 2018, 43(1): 91-95. DOI: 10.13442/j.gnss.1008-9268.2018.01.017
Citation: LIAO Jianfa, ZHANG Yanbing. Satellite Clock Error Prediction of Improved Polynomial and Periodic Mode[J]. GNSS World of China, 2018, 43(1): 91-95. DOI: 10.13442/j.gnss.1008-9268.2018.01.017

改进的多项式+周期项模型的卫星钟差预报

详细信息
    作者简介:

    廖建发(1983-),男,助理工程师,研究方向为工程测量及数据处理。

Satellite Clock Error Prediction of Improved Polynomial and Periodic Mode

  • 摘要: 针对现有的超快速钟差产品IGU精度较低以及无法满足实时PPP技术的问题,提出了一种改进的多项式+周期项钟差预报模型。该模型采用多项式+周期项非线性函数对钟差数据进行滑动估计,结合迭代法对拟合模型的随机误差进行自然修正,以实现对卫星钟差的预报估计。通过与常见的多项式模型、灰色系统模型和多项式+周期项模型的对比分析,结果表明:改进的多项式+周期项模型更加适用于卫星钟差预报,在1天内,其预报精度RMS可以达到0.57 ns,最大偏离程度为1 ns,明显优于灰色系统模型和多项式+周期项模型;随着预报时间的增长,多项式模型、灰色系统模型和多项式+周期项模型的预报精度大幅降低,而改进的多项式+周期项模型没有大幅的变化,预报结果比较稳定。
    Abstract: In order to solve the problem that accuracy of the existing ultra-fast clock error products is too low to meet the real-time PPP technology, an improved polynomial and periodic clock error prediction model is proposed. The model first uses the polynomial and periodic nonlinear function to make a sliding estimation of the clock error data, and then uses the iterative method to naturally correct the random error of the fitting model to realize the prediction and estimation of the satellite clock error. Compared with the common polynomial model, the gray system model and the polynomial and periodic model, the results show that the improved polynomial and periodic model is more suitable for satellite clock error forecasting, and RMS of the forecast results can reach 0.57 ns and the maximum deviation is 1 ns within a day, which is obviously better than the gray system model and the polynomial and periodic model. With the increase of forecasting time, the forecasting accuracy of the polynomial model, the gray system model and the polynomial and periodic model greatly decreases, while the improved polynomial and periodic model does not change significantly, and the forecast result is stable.
  • 张小红,李星星,李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报,2017,46(10):1399-1407.
    李征航,黄劲松. GPS测量与数据处理[M]. 武汉:武汉大学出版社, 2016.
    熊红伟,程新文,张海涛,等. 卫星钟差单差的小波神网络预报[J]. 测绘科学,2017,42(9):9-14,48.
    孙大双,吕志平,王宇谱,等. 一种顾及钟差周期误差和随机特性的卫星钟差预报方法[J]. 大地测量与地球动力学,2016,36(12):1078-1082.
    陶健春,王秉钧. 改进的灰色GM(1,1)在北斗卫星钟差短期预报中的应用[J]. 工程勘察,2017,45(4):55-59.
    蔡成林,何成文,韦照川. 一种GPS IIR-M型卫星超快星历钟差预报的高精度修正方法[J]. 测绘学报,2016,45(7):782-788.
    蔡成林,于洪刚,韦照川,等. 基于Takagi-Sugeno模糊神经网络模型的卫星钟差预报方法[J]. 天文学报,2017,58(3):113-126.
    王宇谱,吕志平,周海涛,等. 基于修正钟差一次差分数据的卫星钟差预报[J]. 大地测量与地球动力学,2016,36(12):1073-1077.
    王利,张勤,黄观文,等. 基于指数平滑法的GPS卫星钟差预报[J]. 武汉大学学报(信息科学版),2017,42(7):995-1001.
    程瑞江,陈西宏,刘赞,等. 一种遗传算法优化的卫星钟差预报[J]. 测绘科学,2017,42(5):25-28,34.
  • 期刊类型引用(4)

    1. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 . 百度学术
    2. 王建敏,孙廷松,孙建宇,李胜旗. 基于LSTM-Informer模型的卫星钟差短期预报. 测绘科学. 2024(08): 16-24 . 百度学术
    3. 马冬青. 基于长短期记忆神经网络的导航卫星钟差预报. 导航定位学报. 2022(05): 178-184+197 . 百度学术
    4. 李玉缝,施韶华. 基于GM(1, 1)与BP神经网络的卫星钟差预报. 电子设计工程. 2020(09): 7-11 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  296
  • HTML全文浏览量:  43
  • PDF下载量:  75
  • 被引次数: 7
出版历程
  • 刊出日期:  2018-03-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭