The Method of Comparative Analysis Sliding and Non Sliding GPS Precise Ephemeris Interpolation
-
摘要: 本文在GPS卫星5 min精密星历的基础上,使用滑动式和非滑动式的Lagrange多项式插值法、Chebyshev多项式拟合法内插卫星的瞬时坐标,确定了内插精度与插值阶数的关系,并对各种方法的优缺点进行了比较分析。结果表明,滑动式内插算法能够抑制插值区间端点附近的振荡与跳跃异常,使用较低的插值阶数就可以达到最优的内插精度,在内插精度与稳定性方面都较非滑动式内插算法有所提高。
-
关键词:
- GPS /
- 精密星历 /
- 滑动式算法 /
- 非滑动式算法 /
- Lagrange插值 /
- Chebyshev拟合
Abstract: Based on the 5-minute precision ephemeris of GPS satellites, this paper uses Lagrange polynomial interpolation with the type of sliding and nonsliding and Chebyshev polynomial fitting method to calculate the instantaneous coordinates of the satellites. The relationship between the precision of interpolation and interpolation order is determined, then the advantages and disadvantages of various methods are compared and analyzed. The results show that the interpolation algorithm with the type of sliding can suppress the oscillation and jumping anomaly near the endpoints in the Interpolation interval and making use of lower interpolation order can achieve optimal interpolation accuracy, in addition, both interpolation accuracy and stability are improved compared to the algorithm of nonsliding interpolation.-
Key words:
- GPS /
- precise ephemeris /
- sliding algorithm /
- non sliding algorithm /
- Lagrange interpolation /
- Chebyshev fitting
-
[1] 孙腾科.基于拉格朗日与切比雪夫的精密星历插值研究[J]. 测绘与空间地理信息,2014,37(2):33-37. [2] 王威,陈明剑,闫建巧,等.北斗三类卫星精密星历内插方法比较分析[J]. 全球定位系统,2016,41(2):60-65. [3] 万亚豪,张书毕,候东阳.基于GPS广播星历的卫星位置拟合精度分析[J]. 测绘工程,2011,20(3):38-40. [4] 任锴,杨力,郭玉良,等.GPS卫星星历计算研究[J]. 海洋测绘,2008(1):31-34. [5] 余鹏,孙学金,赵世军.GPS定位中卫星坐标计算的切比雪夫多项式拟合发[J]. 气象科技,2004,32(3):198-201. [6] 严丽,李萌.切比雪夫多项式拟合卫星轨道与钟差的精度分析[J]. 测绘科学,2013,38(3):59-62. [7] 王兴,高井祥,王坚,等.利用滑动式切比雪夫多项式拟合卫星精密坐标与钟差[J]. 测绘通报,2015(5):6-8,16. [8] 彭小强,高井祥.基于滑动式切比雪夫方法的广播星历插值分析[J]. 煤炭科技,2015,34(6):104-106. [9] 何玉晶,杨力.基于拉格郎日插值方法的GPS IGS精密星历插值分析[J]. 测绘工程,2011,20(5):60-62,66. [10] 雷雨,赵丹宁,高玉平.基于滑动式Lagrange插值方法的GPS精密星历内插分析[J]. 测绘工程,2013,22(2):34-36.
点击查看大图
计量
- 文章访问数: 607
- HTML全文浏览量: 91
- PDF下载量: 101
- 被引次数: 0