留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SBAS电文认证技术综述

宋姜瑶 陈潇 刘婷 吴忠望

宋姜瑶, 陈潇, 刘婷, 吴忠望. SBAS电文认证技术综述[J]. 全球定位系统. doi: 10.12265/j.gnss.2024123
引用本文: 宋姜瑶, 陈潇, 刘婷, 吴忠望. SBAS电文认证技术综述[J]. 全球定位系统. doi: 10.12265/j.gnss.2024123
SONG Jiangyao, CHEN Xiao, LIU Ting, WU Zhongwang. Review of SBAS authentication techniques[J]. GNSS World of China. doi: 10.12265/j.gnss.2024123
Citation: SONG Jiangyao, CHEN Xiao, LIU Ting, WU Zhongwang. Review of SBAS authentication techniques[J]. GNSS World of China. doi: 10.12265/j.gnss.2024123

SBAS电文认证技术综述

doi: 10.12265/j.gnss.2024123
基金项目: 北斗星基增强系统民用服务平台
详细信息
    作者简介:

    宋姜瑶:(1994—),女,硕士,研究方向为卫星导航信号认证技术. E-mail:1242620461@qq.com

    陈潇:(1983—),男,博士,高级工程师,研究方向为卫星导航信号认证技术. E-mail:chenxiao@aircas.ac.cn

    刘婷:(1986—),女,硕士,工程师,研究方向为导航信号认证. E-mail:liuting101015@aircas.ac.cn

    吴忠望:(1976—)男,博士,副教授,研究方向为卫星导航定位和对抗. E-mail:wu_zhw@163.com

    通信作者:

    陈 潇E-mail: chenxiao@aircas.ac.cn

  • 中图分类号: P228.4; TN972

Review of SBAS authentication techniques

  • 摘要: 卫星导航欺骗信号是卫星导航系统服务的重要威胁之一,严重影响导航、定位、授时(positioning, navigaing, timing,PNT)服务,如何提升导航系统服务的安全性,已成为卫星导航服务亟待解决的问题. 卫星导航信号认证是卫星导航系统端提升民用信号防欺骗的新兴技术手段,也是目前各大卫星导航系统的重要发展方向和研究热点. 星基增强系统(Satellite-Based Augmentation System,SBAS)作为卫星导航系统的核心增强系统,目前正在国际民航组织(International Civil Aviation Organization,ICAO)框架下推进SBAS电文认证标准,以期在未来提供SBAS电文认证服务. 伴随着我国北斗星基增强系统(BeiDou Satellite-Based Augmentation System,BDSBAS)建设完成以及下一代北斗导航系统的设计与研制,BDSBAS需要考虑在ICAO下提供SBAS电文认证服务,为用户提供更加安全可信的PNT服务. 本文首先阐述了SBAS电文认证概念,然后梳理了SBAS电文认证发展历程,进一步分析了SBAS电文认证技术面临的热点问题,以期为BDSBAS电文认证服务设计提供技术支撑.

     

  • 图  1  抗欺骗干扰能力分类示意图

    图  2  SBAS系统组成(增加SBAS电文认证)[13]

    图  3  卫星导航电文认证的生成过程

    图  4  TESLA协议原理[6]

    图  5  SBAS用户端的认证流程[6]

    图  6  TESLA三层密钥管理体系示意图

    表  1  SBAS I支路和Q支路技术分析

    指标 分析结果
    信道实施 I支路更优,Q支路需要满足Res 609
    SBAS工程实施成本 I支路更优,FAA ROM 成本评估Q支路将增加50%成本
    I/Q处理 I支路更优,因为Q支路增加了额外的
    基带接收处理
    捕获跟踪处理 I支路和Q支路接近,但是Q支路具有
    更快的速度潜力
    1164 ~1215 MHz有效功率通量密度的影响 Q支路有可能超过Res 609的限制,
    需要评估其可行性
    对信噪比预算的影响 L5Q技术体制受Res 609的限制
    下载: 导出CSV

    表  2  SBAS-L1新增认证电文帧

    数据类型 电文类型 最大更新周期/s
    SBAS-L1身份认证信息 20 6
    TESLA密钥链的根密钥和对应签名 21-1 120
    二级公钥和对应签名 21-2 360
    CA公钥 21-3 360
    下载: 导出CSV

    表  3  SBAS-L5新增认证电文帧

    数据类型 电文类型 最大更新周期/s
    SBAS-L5身份认证信息 50 6
    TESLA密钥链的根密钥和对应签名 51-1 120
    二级公钥和对应签名 51-2 360
    CA公钥 51-3 360
    下载: 导出CSV

    表  4  SBAS新增认证电文帧设计列表

    方案 优点 缺点
    使用MT24代替MT4 实现最简单,
    直接替换
    可广播卫星数少,首次定位时间最慢,电文最大更新周期最大
    使用动态MT1并减少MT4 对其他电文的
    影响较小
    优化不明显
    减少MT2-MT5的频率 最大更新周期较前两种有所减小,首次定位时间最快 为保证完好性,需要新增MT6
    下载: 导出CSV

    表  5  三种MAC方案的性能对比

    方案 BigMAC LittleMAC aMAC
    密钥长度/bits 115 128 92
    MAC长度/bits 30 16 28
    密钥安全性 较强 较强 较强
    MAC安全性
    能否精准确认错误帧 5帧中的某一帧 5帧中的某一帧
    下载: 导出CSV

    表  6  国内外算法参数对比

    对比项 数字签名算法 杂凑密码算法 对称加密算法
    SM2 ECDSA-P256 SM3 SHA-256 SM4 AES-128
    安全等级 128 128 128 128 128 128
    密钥长度 私钥:256
    公钥:512
    私钥:256
    公钥:256
    128 128
    输出长度 512 512 256 256 128 128
    下载: 导出CSV

    表  7  SBAS新增认证电文帧设计特性

    方案 优点 缺点
    AtU 错误电文经过认证后直接被拒绝使用,提供最高程度的保护,防止潜在的欺骗攻击,不会使接收机暴露在欺骗电文下 认证有延迟,需要额外的存储资源,进一步可用性和连续性也会受到影响. 目前尚不清楚是否真的需要这种程度的保护
    UtA 不影响服务连续性 接收机将在一定时间暴露在欺骗电文下,攻击者会有几秒钟的时间来降低计算的保护级别. 目前尚不清楚这种袭击是否会造成实际伤害
    下载: 导出CSV

    表  8  关键性能指标[6]

    方案 主要参数 核心指标
    MAC/数字
    签名长度/bit
    密钥长度/bit TBA/s MAL/s
    TESLA-I MAC:30 密钥长度256
    截断115
    6 11
    ECDSA-Q[24] 数字签名:512 私钥:256
    公钥:512
    3 4
    斯坦福
    TESLA-I[41]
    MAC:30 密钥长度128
    截断115
    6 11
    斯坦福
    ECDSA-Q[41]
    数字签名:448 私钥:112
    公钥:224
    2 2
    下载: 导出CSV
  • [1] HUMPHREYS T E, LEDVINA B M, PSIAKI M L, et al. Assessing the spoofing threat: development of a portable GPS civilian spoofer[C]// Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), 2008. DOI: 10.15781/T26T0HC7Q
    [2] WALTER T. Assured navigation for aviation: threats and mitigations[C]//Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), 2017. DOI: 10.33012/2017.15279
    [3] 赵新曙, 刘淳. GPS军用信号安全防护和密码管理[J]. 现代导航, 2020, 11(1): 14-19. DOI: 10.3969/j.issn.1674-7976.2020.01.003
    [4] 申成良, 郭承军. 卫星导航信号电文加密技术研究与评估[J]. 全球定位系统, 2018, 43(3): 7-12.
    [5] LIU Y, LI S H, FU Q W, et al. Impact assessment of GNSS spoofing attacks on INS/GNSS integrated navigation system[J]. Sensors (basel), 2018, 18(5): 1433. DOI: 10.3390/s18051433
    [6] 陈潇, 田翔, 罗瑞丹, 等. 基于TESLA协议的BDSBAS电文认证技术研究[J]. 北京航空航天大学学报, 2023, 49(9): 2289-2298.
    [7] 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8. DOI: 10.3969/j.issn.2095-4999.2013.01.002
    [8] 邵搏, 耿永超, 丁群, 等. 国际星基增强系统综述[J]. 现代导航, 2017, 8(3): 157-161. DOI: 10.3969/j.issn.1674-7976.2017.03.001
    [9] FERNANDEZ-HERNANDEZ I, CHATRE E, DALLA CHIARA A, et al. Impact analysis of SBAS authentication[J]. Journal of the institute of navigation, 2018, 65(4): 517-532. DOI: 10.1002/navi.267
    [10] ANDERSON J, LO S, WALTER T. Efficient and secure use of cryptography for watermarked signal authentication[C]// Proceedings of the 2022 International Technical Meeting of the Institute of Navigation, 2022. DOI: 10.33012/2022.18228
    [11] DE CASTRO H V, MAAREL G V D, SAFIPOUR E. The possibility and added-value of authentication in future Galileo open signal[C]//Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010), 2010: 1112-1123.
    [12] ANDERSON J M, CARROLL K L, DEVILBISS N P, et al. Chips-message robust authentication (Chimera) for GPS civilian signals[C]//Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), 2017(30): 2388-2416. DOI: 10.33012/2017.15206
    [13] SONG J Y, LIU T, CHEN X, et al. Satellite navigation message authentication in GNSS: research on message scheduler for SBAS L1[J]. Sensors, 2024, 24(2): 360. DOI: 10.3390/s24020360
    [14] SCOTT L. Anti-spoofing & authenticated signal architectures for civil navigation systems [C]//Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), 2003: 1543-1552.
    [15] ANDRIES S. The Global Navigation Satellite System (GNSS) and the European Galileo program [D]. McGill University, 2000.
    [16] CHEN X, LUO R D, LIU T, et al. Satellite navigation signal authentication in GNSS: a survey on technology evolution, status, and perspective for BDS[J]. Remote sensing, 2023, 15(5): 1462. DOI: 10.3390/rs15051462
    [17] MANANDHAR D, SHIBASAKI R. Authenticating Galileo open signal using QZSS signal[C]//Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), 2018: 3995-4003. DOI: 10.33012/2018.15872
    [18] CHIARA A D, BROI G D, POZZOBON O, et al. SBAS authentication proposals and performance assessment[C]// Proceedings of the 30th International Technical Meeting of the satellite division of the institute of navigation (ION GNSS+ 2017), 2017: 2106-2116. DOI: 10.33012/2017.15327
    [19] CAO Y L, CHEN J P, LIU L, et al. Development status and service performance preliminary analysis for BDSBAS[J]. Remote sensing, 2022, 14(17): 4314. DOI: 10.3390/rs14174314
    [20] 王雪峰, 杨明, 郑金华, 等. 基于BDSBAS的性能评估技术研究及系统设计[J]. 现代导航, 2023, 14(1): 14-19. DOI: 10.3969/j.issn.1674-7976.2023.01.004
    [21] 田翔. 面向BDSBAS的电文认证协议与密钥管理策略[D]. 北京: 中国科学院大学, 2023.
    [22] WANG K, CHEN S H, PAN A. Time and position spoofing with open source projects[J]. Computer science, engineering, 2015, 148: 1-8. https://www.blackhat.com/docs/eu-15/materials/eu-15-Kang-Is-Your-Timespace-Safe-Time-And-Position-Spoofing-Opensourcely-wp.pdf
    [23] O’HANLON B, RUSHANAN J J, HEGARTY C, et al. SBAS signal authentication [C]//Proceedings of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), 2022: 3369-3377. DOI: 10.33012/2022.18443
    [24] 穆盛林, 陈颖, 刘婷, 等. 面向BDSBAS电文认证的OTAR播发策略设计[J]. 北京航空航天大学学报, 2021, 41(7): 1453-1461.
    [25] 赵香香, 陈潇, 郭旭强. 一种针对用户GNSS时钟的转发式欺骗方法[J]. 电讯技术, 2020, 60(12): 1415-1419. DOI: 10.3969/j.issn.1001-893x.2020.12.004
    [26] 边少锋, 胡彦逢, 纪兵. GNSS欺骗防护技术国内外研究现状及展望[J]. 中国科学: 信息科学, 2017, 47(3): 275-287.
    [27] SONG J H, WU H T, GUO X Q, et al. Credible navigation algorithm for GNSS attack detection using auxiliary sensor system[J]. Applied sciences, 2021, 11(14): 6321. DOI: 10.3390/app11146321
    [28] 王君, 郭妍, 唐康华, 等. 卫星导航欺骗式干扰技术发展趋势综述[J]. 导航与控制, 2022, 22(1): 13-24. DOI: 10.3969/j.issn.1674-5558.2022.01.002
    [29] 吴志军, 杨一鸣, 张云. 基于身份签名的北斗二代民用D2导航电文认证协议[J]. 电子学报, 2021, 49(9): 1790-1798. DOI: 10.12263/DZXB.20200428
    [30] 刘丁浩, 吕晶, 马蕊, 等. 卫星导航系统欺骗与抗欺骗技术研究与展望[J]. 通信技术, 2017, 50(5): 837-843. DOI: 10.3969/j.issn.1002-0802.2017.05.001
    [31] 申成良, 郭承军. 民用GNSS信号电文加密认证技术研究[C]//第九届中国卫星导航学术年会, 2018.
    [32] FERNANDEZ-HERNANDEZ I, WALTER T, NEISH A M, et al. SBAS message authentication: a review of protocols, figures of merit and standardization plans[C]//Proceedings of the 2021 International Technical Meeting of the Institute of Navigation, 2021: 111-124. DOI: 10.33012/2021.17829
    [33] NEISH A, WALTER T, FERNANDEZ-HERNANDEZ I. Receiver states for SBAS data authentication [C]//2020 International Technical Meeting of the Institute of Navigation. DOI: 10.33012/2020.17197
    [34] CHEN Y, GAO W G, CHEN X, et al. Advances of SBAS authentication technologies[J]. Satellite navigation, 2021, 2(1): 12. DOI: 10.1186/s43020-021-00043-1
    [35] CHEN X, TIAN X, LUO R D, et al. Design of message authentication based on TESLA protocol for BDSBAS[J]. Journal of Beijing university of aeronautics and astronautics, 2021, 2023, 49(9): 2289-2298. DOI: 10.13700/j.bh.1001-5965.2021.0669
    [36] ANDERSON J, LO S, WALTER T. Addressing a critical vulnerability in upcoming broadcast-only TESLA-based GNSS-enabled systems[C]//Proceedings of the 2023 International Technical Meeting of the Institute of Navigation, 2023: 277-285. DOI: 10.33012/2023.18623
    [37] NEISH A, WALTER T, ENGE P. Parameter selection for the TESLA keychain[C]//Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), 2018. DOI: 10.33012/2018.15852
    [38] MIT R, ZANGVIL Y, KATALAN D. Analyzing tesla‘s level 2 autonomous driving system under different gnss spoofing scenarios and implementing connected services for authentication and reliability of gnss data[C]//Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2020: 621-646. DOI: 10.33012/2020.17687
    [39] CHEN Y, LU J, SU C G, et al. Research on the TESLA authentication algorithm for BDSBAS[C]//第十四届中国卫星导航年会, 2024.
    [40] 肖嘉民. 基于TESLA的导航电文认证[D]. 武汉: 华中科技大学, 2021.

    肖嘉民. 基于TESLA的导航电文认证[D]. 武汉: 华中科技大学, 2021.
    [41] NEISH A, WALTER T, POWELL J D. Design and analysis of a public key infrastructure for SBAS data authentication[J]. Navigation, 2020, 66(4): 831-44.
    [42] 杜娟. 星基增强系统互操作及其关键技术研究 [D]. 西安:中国科学院研究生院(国家授时中心), 2015.
    [43] 赵爽. 国外卫星导航星基增强系统发展概况[J]. 卫星应用, 2013(5): 58-61.
    [44] CHIARA A D, BROI G D, POZZOBON O, et al. Authentication concepts for satellite-based augmentation systems[C]//Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), 2016.
    [45] WULLEMS C, TOSATO L, CHIARA A D, et al. Management of active data and authentication in future SBAS receivers[C]//Proceedings of the 2021 International Technical Meeting of The Institute of Navigation, 2021. DOI: 10.33012/2021.17827
    [46] WALTER T, ANDERSON J, LO S. SBAS message schemes to support inline message authentication[C]//Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), 2021.
    [47] SAKAI T, KITAMURA M, KEZUKA A. Prototyping message authentication on L1 SBAS[C]//Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), 2023.
    [48] 张键, 邵搏, 熊帅, 等. 北斗星基增强系统单频服务区域可用性评估 [J]. 导航定位与授时, 2021, 8(3): 137-145.
    [49] 张键, 邵搏, 田宇, 等. 北斗星基增强系统双频多星座服务覆盖范围评估[J]. 导航定位与授时, 2023, 10(5): 81-88.
    [50] 张晶灿. BDSBAS单频电文编排策略改进研究[C]//第十二届中国卫星导航年会, 2021.
    [51] 陈姗姗, 金彪, 赵立谦, 等. SBAS电文时序动态编排算法[J]. 北京航空航天大学学报, 2021, 47(10): 1996-2005.
    [52] 梁曦, 陶晓霞, 周昀, 等. 星基增强系统导航电文及完好性信息研究[J]. 空间电子技术, 2016, 13(5): 39-42+7. DOI: 10.3969/j.issn.1674-7135.2016.05.008
    [53] CAPARRA G, STURARO S, LAURENTI N, et al. Evaluating the security of one-way key chains in TESLA-based GNSS navigation message authentication schemes[C]//The 2016 International Conference on Localization and GNSS (ICL-GNSS), 2016. DOI: 10.1109/ICL-GNSS.2016.7533685
    [54] 田翔, 陈颖, 邵搏, 等. 面向 BDSBAS 电文认证的 OTAR 设计与仿真[J]. 电子学报, 2024, 52(3): 729-739.
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 网络出版日期:  2024-11-07

目录

    /

    返回文章
    返回