Analysis of the impact and effects of the solar storm on the ionosphere from may 8 to 16, 2024
-
摘要: 太阳风暴会造成地球电离层剧烈扰动,影响导航定位性能. 本文针对2024-05-08—16太阳风暴期间发生的电离层扰动事件,分析了东、西半球不同纬度台站的电离层总电子含量(total electron content,TEC)、电离层TEC变化率、电离层F2层临界频率、卫星导航单点定位误差等. 分析认为:电离层向日面会对X射线耀斑发生响应,但是扰动主要来源是太阳风南向磁场能量注入引起的地磁暴;太阳风暴期间电离层顶部和底部的响应并不是同步的;卫星导航单点定位误差在太阳风暴期间会有明显增大,尤其在垂直方向会增大至±10 m, 且在电离层暴恢复相期间会持续存在,并随电离层状态趋于平静呈逐渐减弱趋势.
-
关键词:
- 电离层 /
- 太阳风暴 /
- 总电子含量(TEC) /
- F2层临界频率 /
- 卫星导航单点定位
Abstract: Solar storms can cause severe disturbances to the state of Earth’s ionosphere and affect navigation and positioning performance. According to the ionospheric disturbance event occurring during the solar storm from May 8 to 16, 2024, the changes of ionospheric total electron content, ionospheric total electron content change rate, ionospheric F2 layer critical frequency, satellite navigation single point positioning error and so on at different latitude stations in the eastern and western hemispheres are analyzed. The analysis result shows that the sun-lit hermisphere of the ionosphere will respond to X-ray flares, but the main source of the disturbance is the geomagnetic storm caused by the solar wind southward magnetic field energy injection. The responses at the top and bottom of the ionosphere during solar storms are not synchronized; the single point positioning error of satellite navigation will increase significantly during the solar storm, especially in the vertical direction it will increase to about ±10 m. It will continue to exist during the recovery phase of ionospheric storms, and gradually weaken with the calm of the ionospheric state. -
表 1 太阳爆发期间X射线耀斑时间及强度
序号 时间 强度 1 2024-05-08T01:41 X1.0 2 2024-05-08T05:09 X1.0 3 2024-05-09T09:00 X2.2 4 2024-05-09T17:38 X1.1 5 2024-05-10T06:54 X3.9 6 2024-05-11T01:23 X5.8 7 2024-05-11T11:44 X1.5 8 2024-05-12T16:26 X1.0 9 2024-05-14T02:09 X1.7 10 2024-05-14T12:55 X1.2 11 2024-05-14T16:51 X8.7 12 2024-05-15T08:37 X3.4 13 2024-05-15T14:38 X2.9 -
[1] TSURUTANI B T, VERKHOGLYADOVA O P, MANNUCCI A J, et al. A brief review of “solar flare effects” on the ionosphere[J]. Radio science, 2009, 44(1): 1-14. DOI: 10.1029/2008RS004029 [2] VIJAYA LEKSHMI D, BALAN N, TULASI RAM S, et al. Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles[J]. Journal of geophysical research: space physics, 2011, 116(A11): A11328. DOI: 10.1029/2011ja017042 [3] 姚宜斌, 高鑫. GNSS电离层监测研究进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1728-1739. [4] 吴坤, 徐寄遥, 袁韦. 中国上空夜间电离层等离子体泡群演化过程的多设备观测[J]. 空间科学学报, 2023, 43(3): 446-455. [5] 黄为权, 万卫星, 薛炳森. 2017年5月磁暴过程及近地空间环境响应分析[J]. 中国科学: 技术科学, 2019(9): 1051-1063. [6] 李涌涛, 李建文, 庞鹏, 等. 2017年9月磁暴期间电离层TEC变化分析[J]. 全球定位系统, 2018, 43(4): 42-476. [7] 杨鼎, 方涵先, 杨升高, 等. 磁暴期间全球TEC扰动特性分析[J]. 空间科学学报, 2017, 37(5): 524-530. DOI: 10.11728/cjss2017.05.524 [8] 王格, 王宁波, 李子申, 等. 地磁暴期间北半球高纬度地区电离层变化特征及对精密定位的影响[J]. 空间科学学报, 2021, 41(2): 261-272. DOI: 10.11728/cjss2021.02.261 [9] 全林, 薛军琛, 胡小工, 等. 中国区域GPS单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3047. DOI: 10.6038/cjg2021P0331 [10] QIAN L Y, WANG W B, BURNS A G, et al. Responses of the thermosphere and ionosphere system to concurrent solar flares and geomagnetic storms[J]. Journal of geophysical research: space physics, 2020, 125(3): e2019JA027431. DOI: 10.1029/2019JA027431 [11] FAGUNDES P R, PEZZOPANE M, HABARULEMA J B, et al. Ionospheric disturbances in a large area of the terrestrial globe by two strong solar flares of September 6, 2017, the strongest space weather events in the last decade[J]. Advances in space research, 2020, 66(7): 1775-1791. DOI: 10.1016/j.asr.2020.06.032 [12] TARIKU Y A. The geomagnetic storm time response of the mid latitude ionosphere during solar cycle 24[J]. Radio science, 2021, 56(12): 1-13. DOI: 10.1029/2021RS007340 [13] 桑文刚, 娄广振, 张兴国, 等. 地磁暴期间电离层扰动监测及GNSS定位性能分析[J]. 全球定位系统, 2023, 48(5): 71-78. DOI: 10.12265/j.gnss.2023127 [14] 刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究[J]. 全球定位系统, 2023, 48(1): 3-13. DOI: 10.12265/j.gnss.2022209