CAT II/III precision approach guidance flight verification at xianyang airport based on domestic GBAS
-
摘要: 卫星导航地基增强系统(Ground Based Augmentation System,GBAS),可以提高卫星导航的精度、完好性、连续性和可用性,使飞机在复杂天气和恶劣环境下依然能够实现安全、高效的进近和着陆,满足民航精密进近和着陆引导等高精度导航需求.目前GBAS一类精密进近(CAT I)服务水平已经完成验证和应用,但是其定位精度等服务水平仍不能完全满足民航需求. 具有更好服务水平的GBAS二类/三类精密进近(CAT II/III),其技术和应用仍在开发验证中. 为了提高民航运行效率和安全,急需开展基于CAT II/III与CAT III的飞行校验活动. 当前GBAS主要采用基于单频GPS的工作模式,在系统可用性、安全性和自主性方面非常受限,因此需要开发自主可控的兼容北斗的GBAS系统. 本文设计了飞行校验方案,使用自主研制的国产GBAS设备,设计了飞行校验方案,在西安咸阳机场完成了CAT II/III盲降精密进近着陆引导的GBAS飞行校验. 试验结果表明:兼容北斗的国产GBAS具备支持CAT II/III精密进近的能力,并且其性能远超传统仪表着陆系统. 这一成果的取得为我国航空运输的安全性提供了有力保障.
-
关键词:
- 卫星导航地基增强系统(GBAS) /
- 飞行校验 /
- 精密进近 /
- 飞行科目设计 /
- 精度
Abstract: Ground-Based Augmentation System (GBAS) can improve the accuracy, integrity , continuity and availability of satellite navigation, making it possible for aircraft to achieve safe and efficient approach and landing in complex weather and harsh environment, which can meet the high-precision navigation needs of civil aviation such as precision approach and landing guidance. At present, the GBAS Category I (CAT-I) service level has been verified and applied, but its service level, such as positioning accuracy, still can’t fully meet the needs of civil aviation. The technology and application of GBAS Category II/III (CAT II/III), which have better service level, are still under development and validation. In order to improve the efficiency and safety of civil aviation operations, there is an urgent need to carry out flight verification activities based on CAT II/III. Currently, GBAS is mainly based on single-frequency GPS, which is very limited in terms of system availability, safety and autonomy, so it is necessary to develop an autonomous and controllable GBAS system which is compatible with BDS. This article designs a flight verification scheme, which has completed the GBAS flight verification for CAT II/III blind approach and landing guidance at Xi'an Xianyang Airport by using the domestic GBAS system. The test results show that GBAS compatible with BDS has the ability to support CAT II/III precision approach and its performance is far superior to the traditional instrument landing system. This achievement provides a strong guarantee for the safety of air transporation in China. -
表 1 水平飞行校验结果表
检查高度/
m开始距离/
n mile结束距离/
n mile宽度/
对称性VDB最小信号
强度/dBm1000 15.56 2.29 0.75/49.96 −85.06 表 2 圆弧飞行校验结果表
检查高度/
m半径/
n mile覆盖/
(°)宽度/对称性/
(°/%)VDB最小信号
强度/dBm1500 15 ±35 2.92/50.48 −80.63 表 3 CAT I精密进近飞行校验结果表
开始距离/n mile 10 开始高度/m 1500 最大使用距离/n mile 20 VDB最小信号强度/dBm −76.62 可见卫星数量 30 可用卫星数量 9 校直/(°/μA) −0.00/0.24R 航向结构/距离/(μA/n mile) 1/10.34 1/2.53 1/0.52 下滑角/入口高度/(°/m) 3.00/16.64 下滑结构/距离/(μA/n mile) 1/7.47 2/0.58 1/0.14 表 4 CAT II精密进近飞行校验结果表
开始距离/n mile 15 开始高度/m 1500 最大使用距离/n mile 20 VDB最小信号强度/dBm −81.58 可见卫星数量 29 可用卫星数量 11 校直/(°/μA) −0.00/0.48R 航向结构/距离/(μA/n mile) 1/15.90 1/1.99 1/0.10 下滑角/入口高度/(°/m) 3.00/16.38 下滑结构/距离/(μA/n mile) 1/10.11 4/0.57 2/0.00 表 5 CAT III精密进近飞行校验结果表
开始距离/n mile 17 开始高度/m 1500 最大使用距离/n mile 20 VDB最小信号强度/dBm −80.73 可见卫星数量 31 可用卫星数量 11 校直/(°/μA) 0.01/0.56L 航向结构/距离/(μA/n mile) 1/17.60 1/2.58 1/0.00 1/−0.35 5/−1.68 下滑角/入口高度/(°/m) 3.00/16.49 下滑结构/距离/(μA/n mile) 1/10.43 2/0.58 3/0.01 -
[1] 倪育德, 张振楠. 陆基增强系统与仪表着陆系统的空间对准[J]. 全球定位系统, 2021, 46(3): 85-93. DOI: 10.12265/j.gnss.2021011101 [2] 陆永东, 任龙昊, 王明甲, 等. 仪表着陆系统设备飞行校验结果对比分析方法及系统: CN111824453B[P]. 2022-09-20. [3] CLAUS-SEBASTIAN W, FEUERLE T, PATRICK T. et al. Flight inspection of GAST-D approach and taxi guidance systems[C]//2018 International Flight Inspection Sysmposium, 2018: 156-165 [4] GERBETH D, CAAMANO M, CIRCIU M-S, et al. Satellite selectionin the context of an operational GBAS[J]. Journal of the institute of navigation, 2019, 66(1): 227-238. DOI: 10.1002/navi.284 [5] 杨建科, 莫懦. 北斗地基增强系统测试及精度分析[J]. 全球定位系统, 2018, 43(1): 49-53. [6] 程松. III 类 GBAS 发展现状和趋势[J]. 电子技术与软件工程, 2019(12): 127-128. [7] ICAO Annex 10 Vol. I International Standards and Recommended Practices-AERONAUTICAL TELECOMMUNICATIONS Volume I(Radio Navigation Aids)[S]. Eighth Edition, 2023. [8] 罗潇, 史晓锋. 基于三维反演重构的微波着陆系统飞行校验评估方法[J]. 西华大学学报(自然科学版), 2024, 43(1): 22-27. [9] 刘未科, 史晓锋, 王成林, 等. 基于单片机的飞行校验中导航信号的模拟实现[J]. 电子测量技术, 2012, 35(6): 88-92. DOI: 10.3969/j.issn.1002-7300.2012.06.021 [10] 王瑞军, 薛光. 民航甚高频设备飞行校验研究[J]. 中国科技信息, 2021(20): 34-37. [11] 王鼎, 谢洪森, 王传刚, 等. 着舰引导雷达动态校验系统的设计与实现[J]. 电子设计工程, 2021, 29(8): 90-95. [12] 许良. 浅议仪表着陆系统设备的飞行校验[J]. 通讯世界, 2019(2): 235-236. DOI: 10.3969/j.issn.1006-4222.2019.02.152 [13] 李小强, 王永超. 一种双VDB台站GBAS系统的飞行校验方法[J]. 电子测量技术, 2021, 44(23): 111-116. [14] VHF Omnidirectional Radio Range TECHNICAL MANUAL, CHAPTER 1GENERAL INFORMATION[S]. [15] FELUX M. Total system performance of GBAS-based automatic landings[D]. Munich: Technical University of Munich, 2018. [16] RTCA. Minimum operational performance standards for GPS local area augmentation system airborne equipment[S]. Special committee 159(SC-159) and approved by the RTCA program management committee(PMC), 2000. [17] 中国民用航空局空管行业管理办公室. 民用航空陆基导航设备飞行校验规范: AC-86-TM-2016-01[S]. 2016: 5-15.