Performance evaluation method and flight test analysis of BeiDou satellite-based augmentation dual-frequency service
-
摘要: 北斗星基增强系统(BeiDou Satellite-Based Augmentation System,BDSBAS)通过B2a信号播发双频增强电文实现同时增强多个卫星星座,为用户提供更为精确、可靠的定位和导航服务. 针对民航对BDSBAS在进近阶段定位性能的需求,本文研究了BDSBAS双频定位算法,并基于静态站数据和飞行实测数据从精度、完好性两个方面对BDSBAS双频服务性能进行评估. 静态试验数据选取2024年1月17日北京、西安、嘉峪关BDSBAS站的全天数据,飞行实测数据采集于辽宁省沈阳市法库财湖通用航空机场进行的航空试验. 静态评估结果表明:评估期间北京、西安和嘉峪关BDSBAS站的定位误差相对稳定, 95%水平定位精度优于2 m,95%垂直定位精度优于3 m. 水平方向上可用性优于99.998%, 垂直方向上可用性优于99.984%. 飞行试验结果表明:测试期间水平精度和垂直精度分别为
1.8269 m和2.6014 m,且未发生完好性事件. 静态和动态评估结果均满足国际民用航空组织(International Civil Aviation Organization,ICAO) APV-I指标对精度和完好性的相关要求. 文中研究结果对BDSBAS性能评估具有一定的参考意义.-
关键词:
- 北斗三号系统(BDS-3) /
- 星基增强系统(SBAS) /
- 双频 /
- 飞行测试 /
- 定位精度 /
- 完好性
Abstract: The BeiDou satellite-based augmentation system (BDSBAS) realizes simultaneous augmentation of multiple satellite constellations by broadcasting dual-frequency augmentation messages through B2a signal to provide users with more accurate and reliable positioning and navigation services. In order to meet the demand of civil aviation for the positioning performance of BDSBAS in the approach phase, this paper researches the BeiDou satellite-based augmentation dual-frequency positioning algorithm, and evaluates the performance of the dual-frequency service of BDSBAS based on the data of the static station and the flight data in terms of the accuracy and integrity. The static experiment data were collected from the BDSBAS site in Beijing on January 17, 2024, for the whole day. The flight measurement data were collected from the aviation test conducted at Faku Caihu General Aviation Airport in Shenyang. The static evaluation results show that the positioning errors of Beijing, Xi’an and Jiayuguan stations were relatively stable during the evaluation period. The horizontal positioning accuracy(95%) was better than 2 m; the vertical positioning accuracy(95%) was better than 3 m. Horizontal availability was better than 99.998% and vertical availability was better than 99.984%. The results of the flight test show that the horizontal and vertical accuracy during the test were1.8269 m and2.6014 m, respectively, and no integrity event occurred. The static and dynamic evaluation results met the requirements of the International Civil Aviation Organization (ICAO) APV-I indexes for accuracy and integrity. The results of this study are meaningful for the performance evaluation of BDSBAS.-
Key words:
- BDS-3 /
- satellite-based augmentation system(SBAS) /
- dual-frequency /
- flight tests /
- positioning accuracy /
- integrity
-
表 1 ICAO对各飞行阶段定位性能指标要求
飞行阶段 精度(95%) 完好性 连续性/s 可用性 水平方向/m 垂直方向/m 完好性风险/s HAL/m VAL/m APV-I 16 20 1−2×10−7/150 40 35 1−8×10−6/15 0.99~ 0.99999 APV-II 16 8 1−2×10−7/150 40 20 1−8×10−6/15 0.99~ 0.99999 LPV-200 16 4 1−2×10−7/150 40 35 1−8×10−6/15 0.99~ 0.99999 CAT I 16 4 1−2×10−7/150 40 10 1−8×10−6/15 0.99~ 0.99999 表 2 BDSBAS-B2a电文类型
电文类型 电文内容 0 BDSBAS-B2a测试 31 卫星掩码信息 32 卫星钟差/轨道误差改正数与协方差矩阵 34、35、36 完好性信息(DFREI和DFRECI) 37 降效参数与DFREI映射表 39、40 BDSBAS卫星星历与协方差矩阵 42 BDSBAS系统时与UTC间的偏差 47 BDSBAS卫星历书 62 BDSBAS-B2a内部测试信息 63 BDSBAS-B2a空信息 -
[1] CHEN Y, GAO W G, CHEN X, et al. Advances of SBAS authentication technologies[J]. Satellite navigation, 2021, 2(12): 1-7. DOI: 10.1186/s43020-021-00043-1 [2] YANG Y X, DING Q, GAO W G, et al. Principle and performance of BDSBAS and PPP-B2b of BDS-3[J]. Satellite navigation, 2022, 3(1). DOI: 10.1186/s43020-022-00066-2 [3] WALTER T, SHALLBETG K, ALTSHULER E, et al. WAAS at 15[J]. Journal of the institute of navigation, 2018, 65(4): 581-600. DOI: 10.1002/navi.252 [4] BAUER F, GREZE G, HADDAD F, et al. A study on a New EGNOS V2 release with enhanced system performances[C]//Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), 2019: 902-919. DOI: 10.33012/2019.16944 [5] TSAI Y F, LOW K S. Performance assessment on expanding SBAS service areas of GAGAN and MSAS to Singapore region[C]//2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014. DOI: 10.1109/PLANS.2014.6851433 [6] KITAMURA M, SAKAI T. DFMC SBAS prototype system performance using global monitoring stations of QZSS[C]//Proceedings of the ION 2019 Pacific PNT Meeting, 2019: 382-387. DOI: 10.33012/2019.16789 [7] WANG H W, WANG Z P, FANG K, et al. An airborne ionospheric correction approach for single-frequency BDSBAS[J]. IEEE transactions on geoscience and remote sensing, 2023(61): 1-20. DOI: 10.1109/TGRS.2023.3315743 [8] 郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展[J]. 全球定位系统, 2019, 44(2): 1-12. [9] 刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究——基于系统可靠性工程的视角[J]. 全球定位系统, 2023, 48(1): 3-13. [10] 邵搏, 耿永超, 丁群, 等. 国际星基增强系统综述[J]. 现代导航, 2017, 8(3): 157-161. [11] 中国民用航空局. 中国民航北斗卫星导航系统应用实施路线图[EB/OL]. (2024-05-09)[2019-12014]. http:/www.caac.gov.cn/XXGK/XXGK/TZTG/201912/P020191213525396651648.pdf [12] 肖雅木, 肖志斌, 刘小汇. BDSBAS在中国地区的双频增强定位效果评估[C]//第十三届中国卫星导航年会论文集——S03卫星导航系统与增强, 2022: 5. [13] 全国北斗卫星导航标准化技术委员会(SAC/TC 544). 北斗星基增强系统空间信号接口规范第1部分: 单频增强服务信号BDSBAS-B1C[S]. 2023-08-06. [14] LI R, ZHENG S Y, WANG E S, et al. Advances in BeiDou navigation satellite system (BDS) and satellite navigation augmentation technologies.[J]. Satellite navigation , 2020, 1(1): 1-23. DOI: 10.1186/s43020-020-00010-2 [15] SHAO B, DING Q, WU X. Estimation method of SBAS dual-frequency range error integrity parameter[J]. Satellite navigation, 2020, 1(1): 9. DOI: 10.1186/s43020-020-00011-1