留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的载体滚转角估计方法研究

冯璐 吴鹏 郑昱 张竹娴

冯璐, 吴鹏, 郑昱, 张竹娴. 基于深度学习的载体滚转角估计方法研究[J]. 全球定位系统. doi: 10.12265/j.gnss.2024078
引用本文: 冯璐, 吴鹏, 郑昱, 张竹娴. 基于深度学习的载体滚转角估计方法研究[J]. 全球定位系统. doi: 10.12265/j.gnss.2024078
FENG Lu, WU Peng, ZHENG Yu, ZHANG Zhuxian. Research on roll angle estimation method based on deep learning[J]. GNSS World of China. doi: 10.12265/j.gnss.2024078
Citation: FENG Lu, WU Peng, ZHENG Yu, ZHANG Zhuxian. Research on roll angle estimation method based on deep learning[J]. GNSS World of China. doi: 10.12265/j.gnss.2024078

基于深度学习的载体滚转角估计方法研究

doi: 10.12265/j.gnss.2024078
基金项目: 湖南省普通高等学校科技创新团队支持计划;湖南省科技厅重点研发项目(2022GK2026,2024JK2062);湖南省自然资源厅科技计划项目(2023-78);湖南省教育厅科研计划重点项目(23A0609)
详细信息
    作者简介:

    冯璐:(1983—),女,硕士,副教授,研究方向为卫星导航定位测姿技术及应用. E-mail:fenglu@ccsu.edu.cn

    吴鹏:(1983—),男,博士,副教授,硕士生导师,研究方向为卫星导航信息处理算法、嵌入式软件架构设计、精确制导炮弹导航算法等. E-mail:1346773700@163.com

    郑昱:(1989—),男,博士,副教授,研究方向为卫星导航信号反演技术、遥感遥测技术. E-mail:2415898545@qq.com

    张竹娴:(1984—),女,博士,讲师,研究方向为卫星导航信号反演技术、遥感遥测技术. E-mail:1584767632@qq.com

    通信作者:

    吴 鹏E-mail:1346773700@163.com

  • 中图分类号: P228.8

Research on roll angle estimation method based on deep learning

  • 摘要: 姿态测量技术是载体运动状态和安全监测的基础. 载体自旋运动使得飞行器各姿态角之间互相耦合,对载体的飞行控制带来严重影响. 针对载体滚转下GNSS信号入射方向周期性变化特征,本文提出一种长短期记忆(long short-term memory,LSTM)网络的深度学习方法,以确定载体的实时滚转角. 通过对载体滚转状态下单天线接收卫星信号能量特征的分析,得到载体实时滚转角与接收信号能量幅值关联变化模型,并分析了卫星在轨运行时其空间位置改变对该模型的影响;然后采用LSTM神经网络方法对实测信号中的周期性变化特征进行训练,得到网络各项参数;最后将训练参数用于对实时接收的信号能量进行预测及降噪,并将预测结果通过模型匹配进行载体实时滚转角测算. 为验证文中所提出方法的性能,开展了对天滚转实验. 实验结果表明:LSTM深度学习方法可还原复杂的信号能量特征,并实现实时载体滚转角测算.

     

  • 图  1  矩形微带天线模型

    图  2  滚转坐标系与地心地固坐标系关系

    图  3  卫星信号能量与载体滚转角关联变化示意图

    图  4  BDS GEO卫星24 h运行轨迹

    图  5  LSTM网络单元结构图

    图  6  LSTM网络载体滚转角估计算法流程

    图  7  载体旋转下接收信号能量与理论值

    图  8  卫星信号能量预测结果

    图  9  旋转实验平台示意图

    图  10  LSTM网络对能量信号预测效果分析

    图  11  不同转速下三科方法的载体滚转角预测结果

    表  1  不同方法下滚转角估计误差分析

    算法 2 r/s
    标准差/(°)
    10 r/s
    标准差/(°)
    20 r/s
    标准差/(°)
    平均滚转角
    估计标准差/(°)
    LSTM 7.703 6.937 10.300 8.313
    CNN-
    LSTM
    13.017 13.525 19.559 15.367
    LS 12.780 14.227 19.371 15.460
    下载: 导出CSV
  • [1] Vu-Dan-Thanh Le, Nguyen Anh-Tuan, Nguyen Lac-Hong, et al. Effectiveness Analysis of Spin Motion in Reducing Dispersion of Sounding Rocket Flight due to Thrust Misalignment[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5): 1194-1208. DOI: 10.1007/s42405-021-00383-x
    [2] Dan YANG, XIONG Yongliang, REN Qian, et al. Nutation instability of spinning solid rocket motor spacecraft[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1363-1372. DOI: 10.1016/j.cja.2017.06.005
    [3] Wenchang Yang, Wang Zhiqian, Shen Chengwu, et al. Design of a Roll Angle Measuring Sensor[J]. IEEE Access, 2020, 8: 115159-115166. DOI: 10.1109/ACCESS.2020.3004365
    [4] Paul Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems[M]. Artech, 2007: 1.
    [5] M-Al-Rawashdeh Y. , M. Elshafei, S. El-Ferik. Passive attitude estimation using gyroscopes and all-accelerometer IMU[A]//2016: 368-376.
    [6] 代桃高, 宫帅帅, 魏明, 等. 一种GNSS双天线姿态确定及点位标定方法研究[J]. 全球定位系统, 2019, 44(6): 110-115.
    [7] 陆尤明, 刘刚, 崔晓伟, 等. 基于双天线联合的GNSS信号抗旋转跟踪算法[J]. 清华大学学报(自然科学版), 2021, 61(09): 1015-1024.
    [8] 廉璞, 牟东, 青泽, 等. 侵彻弹药姿态测量技术研究现状及发展[J]. 探测与控制学报, 2021, 43(02): 1-9.
    [9] Duc-Ngoc Nguyen, Nguyen Tuan-Anh. Investigate the Relationship between the Vehicle Roll Angle and Other Factors When Steering[J]. Modelling and Simulation in Engineering, 2023(2023): 1-15.
    [10] CLARK-E COHEN, PARKINSON BRADFORD-W, MCNALLY B-DAVID. Flight Tests of Attitude Determination Using GPS Compared Against an Inertial Navigation Unit[J]. NAVIGATION, 1994, 41(1): 83-97. DOI: 10.1002/j.2161-4296.1994.tb02323.x
    [11] Na Li, Zhao Lin, Li Liang, et al. Integrity monitoring of high-accuracy GNSS-based attitude determination[J]. GPS Solutions, 2018, 22(4).
    [12] Hun-Cheol Im, Lee Sang-Jeong. GPS Signal Tracking on a Multi-antenna Mounted Spinning Vehicle by Compensating for the Spin Effects[J]. International Journal of Control, Automation and Systems, 2018, 16(2): 867-874. DOI: 10.1007/s12555-016-0705-3
    [13] M-V Zharkov, Veremeenko K-K, Antonov D-A, et al. Attitude Determination Using Ambiguous GNSS Phase Measurements and Absolute Angular Rate Measurements[J]. Gyroscopy and navigation (Online), 2018, 9(4): 277-286. DOI: 10.1134/S2075108718040090
    [14] James-H Doty, Anderson D-A, Bybee Thomas. A Demonstration of Advanced Spinning-Vehicle Navigation[C]. In Proceedings of the ION NTM, 2004, San Diego, CA, USA.
    [15] Jeong-Won Kim, Kang Hee-Won, Hwang Dong-Hwan, et al. Signal tracking method of GNSS receivers for spinning vehicles[J]. International Journal of Control, Automation and Systems, 2012, 10(3): 529-535. DOI: 10.1007/s12555-012-0309-5
    [16] Thomas-B Bahder. Attitude determination from single-antenna carrier-phase measurements[J]. Journal of applied physics, 2002, 91(7): 4677-4684. DOI: 10.1063/1.1448871
    [17] Zilong Deng, Shen Qiang, Deng Zhaowei. Roll Angle Measurement for a Spinning Vehicle Based on GPS Signals Received by a Single-Patch Antenna[J]. Sensors, 2018, 18(10): 3479. DOI: 10.3390/s18103479
    [18] Y. Liu, H. Li and X. Du. Roll Attitude Measurement Technique Based on GPS Signal Power[C]. 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 2019.
    [19] Jeff Heaton. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning[J]. Genetic Programming and Evolvable Machines, 2018, 19(1): 305-307.
    [20] Alex Graves, Wayne Greg, Reynolds Malcolm, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538(7626): 471-476. DOI: 10.1038/nature20101
    [21] M Brossard, Barrau A, Bonnabel S. AI-IMU Dead-Reckoning[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 585-595. DOI: 10.1109/TIV.2020.2980758
    [22] H Tang, Niu X, Zhang T, et al. OdoNet: Untethered Speed Aiding for Vehicle Navigation Without Hardware Wheeled Odometer[J]. IEEE Sensors Journal, 2022, 22(12): 12197-12208. DOI: 10.1109/JSEN.2022.3169549
    [23] Ashutosh Kumar Dubey, Kumar Abhishek, García-Díaz Vicente, et al. Study and analysis of SARIMA and LSTM in forecasting time series data[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101474. DOI: 10.1016/j.seta.2021.101474
    [24] Yang Liu, Xu Bo, Chen Zhengkun, et al. Detection and mitigation of time synchronization attacks based on long short-term memory neural network[J]. GPS Solutions, 2023, 28(1): 46.
    [25] 尹玲, 尹京苑, 孙宪坤, 等. 缺失GPS时间序列的神经网络补全[J]. 测绘科学技术学报, 2018, 35(04): 331-336.
    [26] Chen Q. , Q. Zhang, X. Niu. Estimate the Pitch and Heading Mounting Angles of the IMU for Land Vehicular GNSS/INS Integrated System[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6503-6515. DOI: 10.1109/TITS.2020.2993052
    [27] Nitish Srivastava, Hinton Geoffrey, Krizhevsky Alex, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. J. Mach. Learn. Res., 2014, 15(1): 1929-1958.
    [28] Sanjeev Arora, Cohen Nadav, Golowich Noah, et al. A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
    [29] Simon-S Du, Lee Jason-D, Li Haochuan, et al. Gradient Descent Finds Global Minima of Deep Neural Networks[C]. 36th International Conference on Machine Learning . 2019, Long Beach, USA.
    [30] Simon-S Du, Zhai Xiyu, Poczos Barnabas, et al. Gradient Descent Provably Optimizes Over-parameterized Neural Networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 网络出版日期:  2024-10-29

目录

    /

    返回文章
    返回