Improvement of ionospheric availability for BeiDou satellite-based augmentation system based on SHAKING method
-
摘要: 北斗星基增强系统(BeiDou Satellite-Based Augmentation System,BDSBAS)通过境内的监测站为中国及周边地区用户提供电离层改正及电离层完好性监测服务,因此其对电离层算法的可用性要求较高. 本文采用附加Kriging估计的调整球谐函数建模方法(adjusted spherical harmonics adding Kriging,SHAKING)解算BDSBAS电离层参数信息. 通过对现有星基增强系统(Satellite-Based Augmentation System,SBAS)电离层的性能分析可以发现,部分SBAS播发了标记为未监测点的延迟修正信息. 通过对中国区域SBAS格网点需求分析可以发现:在卫星截止高度角为15°时,SHAKING方法提供的电离层可用点为189个、不可用点为3个,满足服务需求;结合BDSBAS提供的钟轨改正信息,SHAKING方法较反距离加权插值(inverse distance weighted,IDW)方法的垂直制导进近可用性范围提高约30%.
-
关键词:
- 北斗星基增强系统(BDSBAS) /
- 电离层 /
- 附加Kriging估计的调整球谐函数方法(SHAKING) /
- 反距离加权插值(IDW) /
- 格网点电离层垂直延迟 /
- 格网点电离层垂直误差
Abstract: The BeiDou Satellite-Based Augmentation System (BDSBAS) provides ionospheric correction and integrity monitoring services for users in China and surrounding regions through domestic monitoring stations. Therefore, it demands high availability of ionospheric algorithms. This paper utilizes the adjusted spherical harmonics adding Kriging (SHAKING) method to calculate ionospheric parameter information for BDSBAS. Performance analysis of existing Satellite-Based Augmentation System (SBAS) ionospheric models reveals that some SBAS systems broadcast delay correction information marked as unmonitored points. Demand analysis of regional SBAS grid points in China shows that when the satellite elevation angle is set as 15°, SHAKING provides 189 usable points and 3 unusable points. Combined with clock and orbit correction information provided by BDSBAS, SHAKING improves the availability range of approaches with vertical guidance by approximately 30% compared to the inverse distance weighting (IDW) method. -
表 1 GIVEI与GIVE对应关系
GIVEI GIVE/m $ \sigma _{{\mathrm{GIVE}}}^2 $ 0 0.3 0.0084 1 0.6 0.0333 2 0.9 0.0749 3 1.2 0.1331 4 1.5 0.2079 5 1.8 0.2994 6 2.1 0.4075 7 2.4 0.5322 8 2.7 0.6735 9 3.0 0.8315 10 3.6 1.1974 11 4.5 1.8709 12 6.0 3.3260 13 15.0 20.7870 14 45.0 187.0826 15 未被监测 未被监测 表 2 各SBAS电离层可用性总结
系统 方法 GIVEI 可用率/% 不可用率/% WAAS Kriging 8~15 99.50 0.05 MSAS 平面拟合 9~15 68.50 31.50 EGNOS 三角线性插值 5~14 100.00 0 GAGAN 双层建模 10~14 100.00 0 SDCM - 3~14 99.95 0 -
[1] CONKER R S, EL-ARINI M B, ALBERTSON T W, et al. Description and assessment of real-time algorithms to estimate the ionospheric error bounds for WAAS[J]. Journal of the institute of navigation, 1997, 44(1): 77-88. DOI: 10.1002/j.2161-4296.1997.tb01941.x [2] LIM C S, PARK B, SO H, et al. Analysis on the multi-constellation SBAS performance of SDCM in Korea[J]. Journal of positioning navigation and timing, 2016, 5(4): 181-91. DOI: 10.11003/JPNT.2016.5.4.181 [3] JIN B, CHEN S, LI D, et al. Performance analysis of SBAS ephemeris corrections and integrity algorithms in China region[J]. Satellite navigation, 2021, 2(1): 15. DOI: 10.1186/s43020-021-00045-z [4] CHEN J, ZHANG Y, YU C, et al. Models and performance of SBAS and PPP of BDS[J]. Satellite navigation, 2022, 3(1): 4. DOI: 10.1186/s43020-022-00065-3 [5] ARENAS J, OCHOA B, RAMIREZ M E, et al. Facing strong ionosphere in SBAS systems: comparison of different techniques for ionosphere estimation[C]//Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), 2014: 1153-1162. DOI: 10.1515/plm-2012-0002 [6] SPARKS L, ALTSHULER E, PANDYA N, et al. WAAS and the ionosphere – a historical perspective: monitoring storms[J]. Journal of the institute of navigation, 2022, 69(1): 503. DOI: 10.33012/navi.503 [7] WALTER T, HANSEN A, BLANCH J, et al. Robust detection of ionospheric irregularities[J]. Journal of the institute of navigation, 2001, 48(2): 89-100. DOI: 10.1002/j.2161-4296.2001.tb00231.x [8] LUPSIC B, TAKACS B. Analysis of the EGNOS ionospheric model and its impact on the integrity level in the central eastern Europe region[J]. The international archives of the photogrammetry, remote sensing and spatial information sciences, 2019(XLII-4/W14): 159-165. DOI: 10.5194/isprs-archives-XLII-4-W14-159-2019 [9] RAO K S. GAGAN - The Indian satellite based augmentation system[J]. Indian journal of radio and space physics, 2007, 36(4): 293-302. [10] LIU A, WANG N, LI Z, et al. Algorithm optimization and terminal validation of BDSBAS ionospheric correction[M]. China Satellite Navigation Conference (CSNC 2024) Proceedings, 2024: 590-604. [11] WALTER T, SHALLBERG K, ALTSHULER E, et al. WAAS at 15[J]. Journal of the institute of navigation, 2018, 65(4): 581-600. DOI: 10.1002/navi.252 [12] 柳景斌, 王泽民, 王海军, 等. 利用球冠谐分析方法和GPS数据建立中国区域电离层TEC模型[J]. 武汉大学学报(信息科学版), 2008, 33(8): 792-795. [13] 张辉, 郝金明, 谢建涛, 等. 多系统非差非组合精密单点定位电离层延迟约束权阵的确定[J]. 测绘学报, 2018, 47(3): 308-315. DOI: 10.11947/j.AGCS.2018.20170151 [14] RTCA-DO-229E. Minimum operational performance standards for global positioning system satellite-based augmentation system airborne equipment [S]. RTCA Program Management Committee on TBD, 2016. [15] 中国卫星导航系统管理办公室. 星基增强服务信号BDSBAS-B1C(1.0版) [S]. 2020. [16] SPARKS L, BLANCH J, PANDYA N. Estimating ionospheric delay using kriging: 2. impact on satellite-based augmentation system availability[J]. Radio science, 2011, 46(6): 1-10. DOI: 10.1029/2011RS004781 [17] BLANCH J. Using kriging to bound satellite ranging errors due to the ionosphere[M]. Stanford University, 2004. [18] BLANCH J, WALTER T, ENGE P. A new ionospheric estimation algorithm for SBAS combining kriging and tomography[C]//Proceedings of the 2004 National Technical Meeting of the Institute of Navigation, 2004: 524-529. [19] SPARKS L, BLANCH J, PANDYA N. Estimating ionospheric delay using kriging: 1. methodology[J]. Radio science, 2011, 46(6): 1-13. DOI: 10.1029/2011RS004667 [20] SPARKS L, ALTSHULER E. The spatial distribution of ionospheric threats to WAAS integrity, 2000–2019: a systematic analysis[C]//Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), 2021: 3932-3944 . DOI: 10.33012/2021.18062 [21] TRILLES S, LA HAUTIÈRE G D, BOSSCHE M V D. Adaptive ionosphere electron content estimation method[C/OL]//Adaptative ionospheric electroncontent estimation method. International Technical Meeting of the Satellite Division of the Instituteof Navigation (ION GNSS 2012), 2012: 2307-2315. [22] ALLEAU P, BUSCARLET G, TRILLES S, et al. Comparative ionosphere electron content estimation method in SBAS performances[C]//Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), 2013: 2507-2315. [23] SAKAI T, KITAMURA M, ASO T, et al. SBAS ionospheric correction with minimalization of the ionospheric threat[C]//Proceedings of the 2017 International Technical Meeting of the Institute of Navigation, 2017: 1049-1056. DOI: 10.33012/2017.14943 [24] SAKAI T, MATSUNAGA K, HOSHINOO K, et al. Evaluating ionospheric effects on SBAS in the low magnetic latitude region[C]//Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), 2004:1318-1328. [25] LIU A, LI Z S, WANG N B, et al. SHAKING: Adjusted spherical harmonics adding Kriging method for near real-time ionospheric modeling with multi-GNSS observations[J]. Advances in space research, 2023, 71(1): 67-79. DOI: 10.1016/j.asr.2022.07.049