Smartphone RTK positioning based on integrated weighting of GNSS base station signal-to-noise ratio and joint satellite system
-
摘要: 随着智能手机芯片和天线性能的不断提升,基于手机的高精度定位逐渐引起学术界和工业界的广泛关注. 相较于单点定位,实时动态 (real-time kinematic,RTK) 定位通常表现出更高的定位性能. 然而,目前对于手机RTK定位的随机模型的研究仍相对较少. 因此,文中以小米8为例,重点探讨了智能手机在多系统RTK定位情境下的随机模型.研究结果表明:不同系统的卫星伪距噪声存在显著差异,而相位噪声的差异则较小. 基于此,本文提出了一种基站信噪比联合卫星系统间综合定权的随机模型. 相对于传统的信噪比模型更准确地考虑了不同系统之间的权重分配. 并在开阔和遮挡条件下进行了静态和动态实验. 结果表明:相比于传统的信噪比模型,新模型在静态开阔、静态遮挡、动态开阔和动态遮挡下三维方向的RTK定位精度分别提升了18.7%、18.3%、3.3%和4.6%.Abstract: With the continuous improvement of smartphone chip and antenna performance, high-precision positioning based on mobile phones has gradually attracted widespread attention from academia and industry. Compared with single-point positioning, real-time kinematic (RTK) positioning usually shows higher positioning performance. However, there are still relatively few studies on the stochastic model of mobile phone RTK positioning. Therefore, this study takes Xiaomi 8 as an example to focus on the stochastic model of smartphones in a multi-system RTK positioning scenario. The research results show that different systems There are significant differences in satellite pseudorange noise, while the difference in phase noise is smaller. Based on this, this paper proposes a stochastic model of base station signal-to-noise ratio combined with comprehensive weighting between satellite systems, which is more efficient than the traditional signal-to-noise ratio model. The weight distribution between different systems was accurately considered. Static and kinematic experiments were conducted under open and occluded conditions. The results show that compared with the traditional signal-to-noise ratio model, the new model is RTK positioning accuracy in the three-dimensional direction under static openness, static occlusion, kinematic openness and kinematic occlusion has increased by 18.7%, 18.3%, 3.3% and 4.6% respectively.
-
Key words:
- smartphones /
- stochastic model /
- signal-to-noise ratio /
- RTK positioning /
- positioning accuracy
-
表 1 智能手机小米8 不同卫星系统伪距噪声
m 卫星系统 静态开阔 静态遮挡 动态开阔 动态遮挡 RMS值 GPS 4.65 5.67 5.15 5.07 5.14 BDS 5.08 5.38 4.02 5.17 4.92 GLONASS 8.54 8.11 8.13 8.19 8.24 表 2 智能手机小米8 不同卫星系统相位噪声
m 卫星系统 静态开阔 静态遮挡 动态开阔 动态遮挡 RMS值 GPS 0.009 0.010 0.009 0.010 0.009 BDS 0.008 0.009 0.008 0.009 0.008 GLONASS 0.009 0.011 0.009 0.010 0.009 表 3 模式设置和参数设置
模式设置 参数设置 定位模式 动态差分定位 截至高度角 10° GNSS GPS(L1)、BDS(B1)、GLONASS(L1) 电离层改正 Klobuchar 对流层改正 Saastamoinen 卫星轨道和钟差 广播星历 -
[1] 王楚极, 龙驰宇, 王锋, 等. 智能手机多频多系统实时动态的定位性能分析[J]. 全球定位系统, 2021, 46(5): 10-16. [2] 耿江辉, 常华, 郭将, 等. 面向城市复杂环境的3种多频多系统GNSS单点高精度定位方法及性能分析[J]. 测绘学报, 2020, 49(1): 1-13. [3] 赵硕, 秘金钟, 徐彦田, 等. 双频智能手机GNSS数据质量及定位精度分析[J]. 测绘科学, 2020, 45(2): 22-28. [4] 崔均烨, 宁一鹏, 米宏志, 等. 双频Android手机GPS/BDS伪距单点定位增强方法与性能评估[J]. 导航定位与授时, 2022, 9(1): 126-133. [5] WADA Y, HSU L T, GU Y L, et al. Optimization of 3D building models by GPS measurements[J]. GPS solutions, 2017, 21(1): 65-78. DOI: 10.1007/s10291-015-0504-y [6] LI M, LEI Z, LI W W, et al. Performance evaluation of single-frequency precise point positioning and its use in the android smartphone[J]. Remote sensing, 2021, 13(23): 4894-4894. DOI: 10.3390/rs13234894 [7] 刘万科, 史翔, 朱锋, 等. 谷歌Nexus 9智能终端原始GNSS观测值的质量分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1749-1756. [8] 伍劭实, 赵修斌, 庞春雷, 等. 载噪比加权的BDS单历元相对定位随机模型研究[C]//第八届中国卫星导航学术年会, 2017: 5. [9] 葛于祥, 刘赞, 李增科, 等. 智能手机单点定位随机模型与平滑方式分析[J]. 合肥工业大学学报(自然科学版), 2022, 45(8): 1113-1119. [10] 肖青怀, 谷守周, 秘金钟, 等. 智能手机多普勒平滑伪距单点定位精度分析[J]. 测绘科学, 2020, 45(7): 11-17. [11] 舒宝, 义琛, 王利, 等. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析[J]. 大地测量与地球动力学, 2022, 42(12): 1222-1226. [12] LI Z S, WANG L, WANG N B, et al. Real-time gnss precise point positioning with smartphones for vehicle navigation[J]. Satellite navigation, 2022, 3(1): 19. DOI: 10.1186/s43020-022-00079-x [13] 冷宏宇, 秘金钟, 徐彦田, 等. 智能手机终端RTK定位性能分析[J]. 测绘科学, 2020, 45(12): 15-21. [14] 袁良雄, 王浩, 申志恒. 基于扩展天线的智能手机GNSS RTK定位性能研究[J]. 全球定位系统, 2023, 48(3): 77-84. [15] LIU J H, TU R, HAN J Q, et al. Estimability analysis of differential inter-system biases and differential inter-frequency biases for dual-frequency gps and bds combined RTK[J]. Measurement science and technology, 2020, 31(2): 025009. DOI: 10.1088/1361-6501/ab4844 [16] 王艺希, 秘金钟, 徐彦田, 等. 卡尔曼滤波方法的BDS/GLONASS RTK定位算法[J]. 测绘科学, 2017, 42(12): 112-117. [17] 曾树林, 匡翠林. 智能手机RTK定位软件实现及应用试验[J]. 全球定位系统, 2022, 47(5): 72-80. [18] 栗广才. 大众智能手机GNSS模糊度固定理论与方法[D]. 武汉: 武汉大学, 2021. [19] PAZIEWSKI J, FORTUNATO M, MAZZONI A, et al. An analysis of multi-gnss observations tracked by recent android smartphones and smartphone-only relative positioning results[J]. Measurement, 2021(175): 109162. DOI: 10.1016/J.MEASUREMENT.2021.109162 [20] YAMAWAKI A, MORITA K, IWANE M. An FPGA implementation of a DWT with 5/3 filter using semi-programmable hardware[C]//IEEE Asia Pacific Conference on Circuits & Systems, 2008:709. DOI: 10.1109/APCCAS.2008.4746122 [21] 张明, 郭斐, 邰贺, 等. 单频非差相位观测值的周跳探测方法及其比较[J]. 全球定位系统, 2009, 34(1): 10-14. [22] 戴振东, 张凯渊, 刘佩林, 等. 面向低成本GNSS接收机终端的周跳修复策略[J]. 导航定位与授时, 2021, 8(6): 125-130.