Research on indoor location algorithm based on 5G+UWB
-
摘要: 第五代通信技术(5th-Generation,5G)为室内定位领域带来了新的可能性,超宽带(ultra wide band,UWB)定位技术与5G定位技术都具有带宽大、频率高的特性,但是定位性能却略有差异. 针对单一传感器定位的准确性、稳定性差的问题,本文提出了5G+UWB的融合定位算法,构建了基于到达时间差(time difference of arrival,TDOA)的5G室内定位、基于三边定位算法的UWB室内定位以及基于融合定位算法的5G+UWB室内定位模型. 首先验证了通过加权最小二乘(weighted least squares,WLS)算法得到的各单系统的初步定位结果,之后验证了结合Taylor级数展开法得到的改进后定位结果. 在此基础上,进一步对通过融合算法将两个单系统定位结果进行融合后的组合定位结果进行实验验证. 实验结果表明:UWB单系统定位结果呈现准确性较低、稳定性较高的特点,5G单系统定位结果呈现准确性较高、稳定性较低的特点,二者组合后可得到准确性和稳定性都相对较好的定位结果,组合系统定位精度最高可达0.22 m,最低可达0.73 m,可实现亚米级定位.
-
关键词:
- 室内定位 /
- 融合定位 /
- 加权最小二乘(WLS) /
- 到达时间差(TDOA) /
- Taylor级数展开法
Abstract: The 5th-Generation (5G) communication technology has brought new possibilities to the field of indoor positioning. Ultra-broadband (UWB) location technology, like 5G location, has the characteristics of large bandwidth and high frequency, but there are slight differences in positioning performance. To address the issues of poor accuracy and stability in single sensor positioning, a fusion positioning algorithm of 5G+UWB was studied in this paper. It establishes an indoor positioning system based on time difference of arrival (TDOA) for 5G, a UWB indoor positioning system based on trilateral positioning algorithm, and a 5G+UWB indoor positioning model based on the fusion positioning algorithm. The initial positioning results of each single system obtained through weighted least squares (WLS) algorithm are validated, followed by verification of improved positioning results obtained through Taylor series expansion method. Furthermore, experimental verification is conducted on the combined positioning results obtained by fusing the positioning results of the two single systems. It has been indicated by the experimental results that UWB single-system positioning shows lower accuracy but higher stability, while 5G single-system positioning exhibits higher accuracy but lower stability. After the combination of the two methods, the accuracy and stability of the combined system can be relatively high. The positioning accuracy of the combined system can be as high as 0.22 m and as low as 0.73 m, enabling sub-meter level positioning. -
[1] 李芳馨, 涂锐, 韩军强, 等. 基于5G毫米波到达时间差的室内定位算法[J]. 全球定位系统, 2021, 46(2): 1-6. [2] PAPP Z, IRVINE G, SMITH R, MOGYOROSI F, et al. TDoA based indoor positioning over small cell 5G networks[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. Budapest, Hungary, 2022. DOI: 10.1109/NOMS54207.2022.9789712 [3] LI F X, TU R, HAN J Q, et al. Performance research of real-time kinematic/5G combined positioning model[J]. Measurement science and technology, 2023, 34(3): 035115. DOI: 10.1088/1361-6501/aca8c3 [4] 李帅辰, 武建锋. 基于Chan-Taylor和优化BP神经网络的5G室内定位算法[J]. 中国惯性技术学报, 2023, 31(8): 806-813,822. [5] 李海文, 李颖, 张龙. 多源融合无缝定位技术研究[J]. 信息工程大学学报, 2022, 23(3): 302-306. [6] 郭凌, 杜伟伟, 刘凌, 等. 5G与高精度定位融合在军事物流仓储中的应用[J]. 测绘通报, 2021(9): 64-67,97. [7] 王敏敏. UWB/蓝牙组合室内行人导航定位模型研究[D]. 北京: 北京建筑大学, 2023. [8] WANG Q, LI Z H, ZHANG H, et al. An indoor UWB NLOS correction positioning method based on anchor LOS/NLOS map[J]. IEEE sensors journal, 2023, 23(24): 30739-30750. DOI: 10.1109/JSEN.2023.3328715 [9] 刘源. 基于LM-BP神经网络的5G+UWB融合定位方法[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2023. [10] 仲崇权, 张立勇, 杨素英, 等. 基于最小二乘原理的多传感器加权融合算法[J]. 仪器仪表学报, 2003(4): 427-430. [11] 刘盼. 基于蓝牙5.1的室内定位系统的研究与实现[D]. 郑州: 郑州大学, 2021.