GNSS interference localization technology using the carrier-to-noise ratio measurements of the receivers
-
摘要: 由于GNSS信号在抵达地面时信号强度较低,极易遭受无意或蓄意的人为干扰,严重时甚至会导致导航和定位服务不可用,因此,定位和消除干扰源显得尤为重要. 面向常见的压制式干扰,针对目前的定位方法主要是对原始采样信号进行处理,实现起来往往具有设备复杂、计算量大、成本高的问题. 本文提出了一种利用普通商用接收机的载噪比(carrier-to-noise ratio,C/N0)测量值进行GNSS干扰源定位的方法,通过C/N0测量值估计干扰信号强度差,进而解算出干扰源位置. 实测结果表明:视距条件下,在约11 400 m2的监测区域中,该方法能够达到13.17 m的平均绝对定位误差,且耗时较少,可实现干扰源的有效定位. 所提方法无需对接收机进行软硬件的改动,实现简单,成本低,利于工程应用.Abstract: Due to the low signal strength of GNSS signals upon reaching the ground, they are highly susceptible to unintentional or intentional human interference, which can severely impact the availability of navigation and positioning services. Therefore, locating and eliminating sources is of paramount interference. For common jamming interference, current positioning methods mainly involve processing the raw sampled signals, which often leads to issues with complex equipment, high computational demands, and high costs. This paper proposes a method for locating GNSS interference source using the carrier-to-noise ratio (C/N0) measurements from standard commercial receivers. By estimating the interference signal strength difference through C/N0 measurements, the position of the interference source can be calculated. Field test results indicate that, under line-of-sight conditions, in a monitoring area of approximately 11 400 square meters, this method can achieve a Mean Absolute Error (MAE) of 13.17 meters with minimal time consumption, thereby effectively locating the interference source. The proposed method does not require any modifications to the receiver's hardware or software, making it simple to implement and cost-effective, which is advantageous for engineering applications.
-
Key words:
- GNSS /
- GNSS receiver /
- carrier-to-noise ratio /
- jamming /
- interference localization
-
表 1 路径损耗指数
$\alpha $ 经验值不同环境 $\alpha $ 自由空间 2 平原 3 丘陵 3.5 郊区,低处 4 市区,高楼 4.5 表 2 迭代解算位置
迭代次数 干扰源位置 1 (16.31,–5.91) 2 (73.36,108.85) 3 (74.85,22.20) 4 (56.14,32.17) 5 (52.12,37.25) 6 (51.53,37.50) 7 (51.52,37.53) 表 3 实验结果
干扰源
估计位置干扰源
真实位置定位
误差/m定位
耗时/ms(41.57,54.72) (32.01,47.29) 12.11 28.836 (58.35,84.73) (49.27,72.49) 15.24 29.507 (64.35,57.42) (54.18,48.39) 13.60 27.628 (76.19,81.21) (68.56,73.86) 10.59 29.553 (61.36,40.09) (74.15,32.12) 15.07 30.466 (44.45,74.87) (48.23,63.84) 11.66 29.324 (47.22,81.38) (56.27,92.74) 14.52 29.870 (68.26,53.08) (62.54,44.64) 10.20 29.562 (62.73,78.68) (74.26,89.37) 15.72 28.532 (24.47,69.85) (28.55,82.19) 13.00 28.048 -
[1] AVILES J S, VAN DYKE K L. US department of transportation (DOT) global positioning system (GPS) interference detection and mitigation (IDM) program[C]//The 36th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2023), 2023: 1276-1298. [2] MENG L X, YANG L, YANG W, et al. A survey of GNSS spoofing and anti-spoofing technology[J]. Remote sensing, 2022, 14(19): 4826. DOI: 10.3390/rs14194826 [3] QIAO J, LU Z K, LIN B J, et al. A survey of GNSS interference monitoring technologies[J]. Frontiers in physics, 2023, 11(17): 1133316. DOI: 10.3389/fphy.2023.1133316 [4] 孙兴信, 甄卫民, 张发祥. 基于六旋翼无人机平台的GNSS干扰源测向与定位系统设计与实现[J]. 全球定位系统, 2021, 46(5): 79-83. DOI: 10.12265/j.gnss.2021040803 [5] EL GEMAYEL N, KOSLOWSKI S, JONDRAL F K, et al. A low cost TDOA localization system: setup, challenges and results[C]//The 10th Workshop on Positioning, Navigation and Communication (WPNC), IEEE, 2013: 1-4. DOI: 10.1109/WPNC.2013.6533293 [6] THANAKAN K, SAPPHANIRAN K, PALASARN T, et al. Real-time jamming detection and position estimation via software-defined radio (SDR)[C]//The 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2021: 280-284. DOI: 10.1109/ECTI-CON51831.2021.9454678 [7] BORIO D, GIOIA C, ŠTERN A, et al. Jammer localization: from crowdsourcing to synthetic detection[C]//The 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), 2016: 3107-3116. DOI: 10.33012/2016.14689 [8] WANG P, MORTON Y T. Efficient weighted centroid technique for crowdsourcing GNSS RFI localization using differential RSS[J]. IEEE transactions on aerospace and electronic systems, 2019, 56(3): 2471-2477. DOI: 10.1109/TAES.2019.2917577 [9] 刘睿, 杨志伟, 陈奇东, 等. 基于信号传播修正的GNSS干扰源质心定位方法[J]. 系统工程与电子技术, 2021, 43(8): 2083-2089. [10] LYU D L, CHEN X, WEN F, et al. Urban area GNSS in-car-jammer localization based on pattern recognition[J]. Navigation: journal of the institute of navigation, 2019, 66(2): 325-340. DOI: 10.1002/navi.301 [11] DEMPSTER A G, CETIN E. Interference localization for satellite navigation systems[J]. Proceedings of the IEEE, 2016, 104(6): 1318-1326. DOI: 10.1109/JPROC.2016.2530814 [12] HAYKIN S. 现代无线通信[M]. 郑宝玉,译. 北京: 电子工业出版社, 2006: 22-23. [13] BARTL S, BERGLEZ P, HOFMANN-WELLENHOF B. GNSS interference detection, classification and localization using software-defined radio[C]//2017 European Navigation Conference (ENC), 2017: 159-169. DOI: 10.1109/EURONAV.2017.7954205 [14] FABIO D. 全球导航卫星系统(GNSS)干扰与抗干扰[M]. 张爽娜, 王盾, 岳富占, 等, 译. 北京: 国防工业出版社, 2023: 56-58. [15] BETZ J W. Effect of narrowband interference on GPS code tracking accuracy[C]//The 2000 National Technical Meeting of the Institute of Navigation, 2000: 16-27. [16] BETZ J W. Effect of partial-band interference on receiver estimation of C/N0: Theory[C]//The 2001 National Technical Meeting of the Institute of Navigation, 2001: 817-828. [17] 邓旭, 吕志伟, 周玟龙, 等. 采用载噪比的卫星导航欺骗检测算法设计[J]. 导航定位学报, 2022, 10(2): 109-118. DOI: 10.3969/j.issn.2095-4999.2022.02.014