A quality evaluation method of 3D water vapor tomography based on multi-GNSS observations
-
摘要: 本文基于提出的水汽层析廓线评价指标(tomographic profic fit score,TPFS),首次对GPS、北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)、GLONASS和Galileo 4个系统的水汽层析结果进行了精度评估. 结果表明:各GNSS水汽层析解算结果差异较小,最大均方根误差(root-mean-square error,RMSE)差距在11%之内,其中BDS水汽层析表现最好,GLONASS水汽层析表现最差. 相较于GPS、GLONASS、Galileo,BDS在低层区域(2406 m以下)具有更好的层析解算优势. 尤其在底层,BDS与GPS、GLONASS、Galileo的RMSE相比分别改进了3.2%、16.2%、5.2%. 此外,在层析水汽廓线TPFS对比中,BDS平均TPFS最小;在暴雨天气下BDS水汽廓线TPFS最低,相较于GPS、GLONASS、Galileo改进了25.2%、31.5%、32.8%.Abstract: In this paper, we present an evaluation of the water vapor tomography results from four systems-GPS, BDS, GLONASS, and Galileo in terms of accuracy, using the proposed water vapor tomography profile evaluation index TPFS. The results show that the differences in the water vapor tomography solving results of each GNSS are negligible, with the maximum RMSE difference being within 11%. Among these, BDS performs the best in water vapor tomography, while GLONASS performs the worst. Compared with GPS, GLONASS, and Galileo, BDS has a significant advantage in the lower layer (below 2406m). In particular, in the bottom layer, BDS shows a respective improvement of 3.2%, 16.2%, and 5.2% in RMSE compared to GPS, GLONASS, and Galileo. Furthermore, in the comparison of TPFS of tomography water vapor profiles, BDS has the smallest average TPFS and the lowest TPFS of water vapor profiles under heavy rainfall, which is improved by 25.2%, 31.5%, and 32.8% compared to GPS, GLONASS, and Galileo.
-
表 1 各GNSS系统平均信号数量与穿过体素块的平均覆盖率
系统 平均信号数量 平均覆盖率/% GPS 211 71.6 BDS 156 61.2 GLONASS 116 64.8 Galileo 159 66.0 表 2 各GNSS层析结果与探空数据对比的平均RMSE和平均MAE
g·m−3 系统 RMSE MAE GPS 2.316 1.574 BDS 2.271 1.565 GLONASS 2.517 1.699 Galileo 2.331 1.590 表 3 各GNSS系统层析水汽廓线平均TPFS
g·m−3 项目 GPS BDS GLONASS Galileo TPFS 5.878 5.612 6.436 5.854 -
[1] 高志钰, 李建章, 刘彦军, 等. 利用BDS数据反演大气可降水量及其精度分析[J]. 测绘通报, 2019(5): 35-38,47. [2] 郑志卿, 张克非, 李龙江, 等. 基于MGEX站多系统GNSS反演大气可降水量精度评估[J]. 全球定位系统, 2022, 47(5): 100-110. DOI: 10.12265/j.gnss.2022119 [3] WU Z L, LU C X, HAN X J, et al. Real-time shipborne multi-GNSS atmospheric water vapor retrieval over the South China Sea[J]. GPS solutions, 2023, 27(4): 179. DOI: 10.1007/s10291-023-01519-0 [4] 张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1172-1191. [5] CRESPI M G, LUZIETTI L, MARZARIO M. Investigation in GNSS ground-based tropospheric tomography: benefits and perspectives of combined Galileo, Glonass and GPS constellations[J/OL]. (2023-11-20)[2024-01-09]. Geophysical research abstracts, 2008. https://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/03643/EGU2008-A-03643.pdf [6] 夏朋飞, 叶世榕, 江鹏. GPS/GLONASS组合精密单点定位技术在三维水汽层析中的应用[J]. 大地测量与地球动力学, 2015, 35(1): 72-76. [7] 侯建辉. 地基Beidou/GPS大气水汽反演及其应用研究[D]. 济南: 山东建筑大学, 2021. [8] WANG X Y, WANG X L, DAI Z Q, et al. Tropospheric wet refractivity tomography based on the BeiDou satellite system[J]. Advances in atmospheric sciences, 2014(31): 355-362. DOI: 10.1007/s00376-013-2311-0 [9] ZHAO Q Z, YAO Y B, CAO X Y, et al. Accuracy and reliability of tropospheric wet refractivity tomography with GPS, BDS, and GLONASS observations[J]. Advances in space research, 2019, 63(9): 2836-2847. DOI: 10.1016/j.asr.2018.01.021 [10] 丁楠. 地基GNSS水汽层析关键技术研究[D]. 徐州: 中国矿业大学, 2018. [11] ROHM W. The ground GNSS tomography – unconstrained approach[J]. Advances in space research, 2013, 51(3): 501-513. DOI: 10.1016/j.asr.2012.09.021 [12] 宋淑丽, 朱文耀, 丁金才, 等. 上海GPS网层析水汽三维分布改善数值预报湿度场[J]. 科学通报, 2005, 50(2): 2271-2277. DOI: 10.1360/csb2005-50-20-2271 [13] 王昊, 丁楠, 张文渊, 等. GNSS水汽层析的自适应非均匀指数分层方法[J]. 测绘学报, 2022, 51(3): 327-339. DOI: 10.11947/j.AGCS.2022.20210126 [14] GOLUB G H, REINSCH C. Singular value decomposition and least squares solutions[J]. Numerische mathematik, 1970, 14(5): 403-420. DOI: 10.1007/BF02163027 [15] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of basic engineering. 1960, 82(1): 35-45. DOI: 10.1115/1.3662552 [16] GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography[J]. Journal of theoretical biology, 1970, 29(3): 471-476. DOI: 10.1016/0022-5193(70)90109-8 [17] 何林, 柳林涛, 苏晓庆, 等. 水汽层析代数重构算法[J]. 测绘学报, 2015, 44(1): 32-38. [18] 于胜杰, 万蓉, 付志康. 代数重构算法在GNSS水汽层析解算中的应用[J]. 武汉大学学报(信息科学版), 2016, 41(8): 1113-1117,1124. [19] 张文渊, 张书毕, 左都美, 等. GNSS水汽层析的自适应代数重构算法[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1318-1327. [20] 王维, 王解先. 基于代数重构技术的对流层水汽层析[J]. 计算机应用, 2011, 31(11): 3149-3151. [21] 李超, 魏合理, 王珍珠, 等. 合肥地区大气水汽标高变化特征的统计研究[J]. 大气与环境光学学报, 2008(2): 115-120. [22] 闫香蓉, 杨维芳, 李得宴, 等. 基于水汽垂直指数分布特征的PWV快速层析方法[J]. 全球定位系统, 2024, 49(2):61-68 . DOI: 10.12265/j.gnss.2023164 [23] ZHAO Q Z, ZHANG K F , YAO W Q. Influence of station density and multi-constellation GNSS observations on troposphere tomography[J]. Annales geophysicae, 2019, 37(1): 15-24. DOI: 10.5194/angeo-37-15-2019 [24] YANG F, SUN Y L, MENG X L, et al. Assessment of tomographic window and sampling rate effects on GNSS water vapor tomography[J]. Satellite navigation, 2023, 4(1): 7. DOI: 10.1186/s43020-023-00096-4 [25] 李敏姣, 张雪芹, 解承莹. 青藏高原上对流层水汽“典型异常年”成因分析[J]. 高原气象, 2014, 33(5): 1197-1203. DOI: 10.7522/j.issn.1000-0534.2013.00111 [26] 刘晶, 周玉淑, 杨莲梅, 等. 伊犁河谷一次极端强降水事件水汽特征分析[J]. 大气科学, 2019, 43(5): 959-974.