GNSS vertical time series denoising method for mining area subsidence monitoring
-
摘要: GNSS技术作为开采沉陷监测的重要手段,其时间序列中的噪声会对监测结果造成较大影响. 本文提出一种混合灰狼粒子群优化算法(improved hybrid grey wolf particle swarm optimization,IPSOGWO)和改进自适应噪声完备集合经验模态分解(improved complete ensemble empiricalmode decomposition with adaptive noise,ICEEMDAN)联合小波阈值(wavelet thresholding,WT)的降噪方法. 通过IPSOGWO优化ICEEMDAN算法的超参数,对GNSS时间序列进行分解,提取本征模态函数(Intrinsic Mode Function,IMF). 利用多尺度排列熵筛选出含有噪声的IMF分量,采用小波阈值对含噪分量进行二次处理,并与剩余IMF分量重构,获得降噪结果. 利用仿真信号和某矿区自动化监测站的实测数据进行实验,结果表明:与小波阈值、完备集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)和GWO-ICEEMDAN相比,本文方法降噪性能更好,降噪后的数据可为后续工作面沉降分析提供支持.Abstract: The GNSS technology, as an important tool for mining subsidence monitoring, is significantly affected by the noise present in its time series. This paper proposes a denoising method that combines an Improved hybrid grey wolf particle swarm optimization (IPSOGWO) and an improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), coupled with wavelet thresholding (WT). The IPSOGWO optimizes the hyperparameters of the ICEEMDAN algorithm to decompose the GNSS time series and extract the intrinsic mode functions (IMF). The multi-scale permutation entropy is used to select the IMF components containing noise. These components are then secondarily processed using wavelet thresholding and reconstructed with the remaining IMF components to obtain the denoised results. Experiments with simulated signals and actual data from an automated monitoring station in a mining area demonstrate that the proposed method outperforms the wavelet threshold, complete ensemble empirical mode decomposition (CEEMD), and GWO-ICEEMDAN in terms of denoising performance, providing reliable data for subsequent analysis of working face subsidence.
-
Key words:
- GNSS /
- ICEEMDAN /
- wavelet thresholding /
- mining area monitoring /
- time series denoising.
-
表 1 两种模拟信号四种降噪方法的评价指标
信号 降噪方法 RMSE R SNR/dB 信号1 原始信号+噪声 3.453 1 0.884 6 0.662 5 WT 0.363 8 0.985 8 21.494 6 CEEMD 0.419 9 0.921 5 20.107 4 GWO-ICEEMDAN 0.345 4 0.990 6 22.177 9 IPSOGWO-ICEEMDAN-WT 0.313 7 0.995 8 22.720 8 信号2 原始信号+噪声 0.911 3 0.910 7 9.837 7 WT 0.238 9 0.993 0 21.465 2 CEEMD 0.185 5 0.995 6 23.966 0 GWO-ICEEMDAN 0.1697 0.996 8 24.970 4 IPSOGWO-ICEEMDAN-WT 0.1594 0.998 0 25.981 5 表 2 IPSOGWO-ICEEMDAN分解后各IMF的MPE值
IMF分量 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 残余项 MPE 0.913 0.876 0.845 0.673 0.482 0.421 0.364 0.224 0.134 表 3 四个监测站的降噪指标
站点 降噪方法 MRSE R SNR/dB 1号监测站 WT 0.466 0.926 74.419 CEEMD 0.528 0.921 73.590 GWO-ICEEMDAN 0.325 0.930 77.284 IPSOGWO-ICEEMDAN-WT 0.273 0.942 78.863 2号监测站 WT 1.004 0.935 76.906 CEEMD 1.021 0.941 85.242 GWO-ICEEMDAN 0.951 0.943 85.442 IPSOGWO-ICEEMDAN-WT 0.931 0.970 85.419 3号监测站 WT 0.755 0.909 73.673 CEEMD 0.834 0.914 78.696 GWO-ICEEMDAN 0.702 0.933 78.758 IPSOGWO-ICEEMDAN-WT 0.699 0.947 78.785 4号监测站 WT 0.205 0.981 73.889 CEEMD 0.303 0.994 77.832 GWO-ICEEMDAN 0.239 0.990 78.050 IPSOGWO-ICEEMDAN-WT 0.228 0.997 78.396 -
[1] 陶国强. 基于奇异谱分析的GNSS坐标时间序列粗差探测与噪声估计[J]. 大地测量与地球动力学, 2021, 41(12): 1223-1229. [2] ZHUANG W Q, LI J, HAO M, et al. Analyze the characteristics of crustal activity in the southern Sichuan-Yunnan using GNSS data and focal mechanism solution[J]. Journal of geodesy and geodynamics, 2021, 41(7): 732-738,746. [3] 曲轩宇, 李新瑞, 郑蕾, 等. 联合交叉验证和CEEMD-WT的GNSS时间序列降噪方法[J/OL]. 武汉大学学报(信息科学版). (2023-06-04)[2023-06-28]. https://doi.org/10.13203/j.whugis20220570 [4] 范小猛, 胡川, 张重阳, 等. 三种GNSS高程时序降噪方法的效果对比分析[J]. 全球定位系统, 2022, 47(1): 68-73. [5] 戴海亮, 孙付平, 姜卫平, 等. 小波多尺度分解和奇异谱分析在GNSS站坐标时间序列分析中的应用[J]. 武汉大学学报(信息科学版), 2021, 46(3): 371-380. [6] YEH J R. SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in adaptive data analysis, 2010, 2(2): 135-156. DOI: 10.1142/S1793536910000422 [7] 刘希康, 丁志峰, 李媛, 等. EMD在GNSS时间序列周期项处理中的应用[J]. 武汉大学学报(信息科学版), 2023, 48(1): 135-145. [8] 鲁铁定, 钱文龙, 贺小星, 等. 一种确定分界IMF分量的改进EMD方法[J]. 大地测量与地球动力学, 2020, 40(7): 720-725. [9] 陈祥, 杨志强, 田镇, 等. GA-VMD与多尺度排列熵结合的GNSS坐标时序降噪方法[J]. 武汉大学学报(信息科学版), 2023, 48(9): 1425-1434. [10] 嵇昆浦, 沈云中. 含缺值GNSS基准站坐标序列的非插值小波分析与信号提取[J]. 测绘学报, 2020, 49(5): 537-546. [11] 邱小梦, 陶国强, 王奉伟, 等. LMD和小波阈值的GNSS坐标时间序列降噪应用[J]. 测绘科学, 2021, 46(8): 28-32,48. [12] 马俊, 曹成度, 姜卫平, 等. 利用小波包系数信息熵去除GNSS站坐标时间序列有色噪声[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1309-1317. [13] CIVERA M, SURACE C. A comparative analysis of signal decomposition techniques for structural health monitoring on an experimental benchmark[J]. Sensors, 2021, 21(5): 1825. DOI: 10.3390/s21051825 [14] ZHANG B Y, WANG P, LIU G Y, et al. Diagnosis of single and multiple-source faults of chiller sensors using EWEEMD-ICKNN by time sequence denoising and non-Gaussian distribution feature extraction[J]. Energy and buildings, 2023(298): 113572. DOI: 10.1016/j.enbuild.2023.113572 [15] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1(1): 1-41. DOI: 10.1142/S1793536909000047 [16] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011: 4144-4147. DOI: 10.1109/ICASSP.2011.5947265 [17] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14(11): 19-29. DOI: 10.1016/j.bspc.2014.06.009 [18] REN C F, XU J, XU J, et al. Coal–Rock cutting sound denoising based on complete ensemble empirical mode decomposition with adaptive noise and an improved fruit fly optimization algorithm[J]. Machines, 2022, 10(6): 412. DOI: 10.3390/machines10060412 [19] 陈爱午, 王红卫. 基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断[J]. 机电工程, 2023, 40(8): 1157-1166. [20] 赵桠松, 许辉群, 王泽峰, 等. 基于ICEEMDAN的曲波阈值地震数据去噪方法研究[J]. 工程地球物理学报, 2022, 19(2): 252-257. [21] 周东红, 周建科, 夏同星, 等. 三参数小波变换自适应阈值压制地震数据高频随机噪声[J]. 地球物理学报, 2023, 66(5): 2095-2111. [22] 于航, 王直, 董勃, 等. 基于改进小波阈值法的MEMS陀螺仪信号降噪研究[J]. 计算机与数字工程, 2022, 50(8): 1844-1847. [23] HALIDOU A, MOHAMADOU Y, ARI A A A, et al. Review of wavelet denoising algorithms[J]. Multimedia tools and applications, 2023(82): 41539-41569. DOI: 10.1007/s11042-023-15127-0 [24] LI, H, LI S S, SUN J, et al. Ultrasound signal processing based on joint GWO-VMD wavelet threshold functions[J]. Measurement, 2024(226): 114143. DOI: 10.1016/j.measurement.2024.114143