The performance of SF-PPP corrected by different ionospheric models
-
摘要: 电离层延迟可严重制约单频接收机的定位精度. 基于此,本文介绍了四种单频接收机常用的电离层延迟改正方法,包括广播电离层改正模型(策略1),顾及太阳位置的变化全球电离层格网产品(Global Ionosphere Map,GIM)时间旋转内插(策略2),GIM投影函数改正(策略3)和半合改正模型(策略4). 同时,选择不同太阳活动期,不同纬度的测站验证不同电离层改正方法的单频精密单点定位(single-frequency point positioning,SF-PPP)定位结果偏差. 经过对比分析,得到如下结论:1)总体来说,半合改正模型得到的定位效果最佳,其次是使用GIM产品对电离层延迟进行改正,最后是广播电离层模型;2)在不同太阳活动跃期,不同策略在低纬度测站的定位偏差最大,其次是高纬度测站,中纬度测站的定位偏差最小;3)策略2和策略3在不同太阳活动期不同纬度测站的水平定位平差约0.150 m,三维定位偏差约0.700 m;策略4在不同太阳活动期不同纬度测站的水平定位偏差为0.100 m,三维定位偏差为0.500 m.
-
关键词:
- 单频接收机 /
- 电离层 /
- 电离层改正模型 /
- 单频精密单点定位(SF-PPP)
Abstract: Ionospheric delay can seriously affect the positioning accuracy of single-frequency global navigation satellite system (GNSS) receiver. Thus, this paper assessed the positioning error of single-frequency GNSS receiver corrected by four commonly used ionospheric delay correction methods, i.e., broadcast ionospheric correction models (strategy 1), time-rotation interpolation of Global Ionosphere Map (GIM) considering the variation of the position for the sun (strategy 2), GIM corrected by ionospheric mapping function (strategy 3), and half-sum correction model (strategy 4). Meanwhile, the correction results of different methods for the single-frequency precise point positioning (SF-PPP) were evaluated by using the data collected by ground-based GNSS stations over different latitudes on solar condition days. The assessment results were listed as follows. 1) The positioning error of SF-PPP corrected by the half-sum correction model was the best, then was the ionospheric delay corrected GIM. The positioning error corrected by broadcast ionospheric model was the worst. 2) On different solar condition days of each strategy, the positioning error for low-latitude stations was the largest, the was high-latitude stations. The positioning error for mid-latitude stations was the smallest. 3) The horizontal positioning error of strategy 2 and strategy 3 was about 0.150 m over different latitudes on different solar activity periods, while the 3D positioning error is about 0.700 m. The corresponding errors were about 0.100 m and 0.500 m for strategy 4. -
表 1 SF-PPP采用的策略
项目 策略 使用软件 RTKLIB 轨道参数 IGS中心提供的事后精密星历 卫星系统 GPS 定位模型 静态 位置参数 IGS中心提供的每日SNX文件 卫星钟差 IGS中心提供的钟差产品 天线相位变化/偏差 根据IGS中心提供的天线文件进行改正 相对论效应 模型改正 潮汐改正 模型改正 截止高度角 15° 对流层改正 Saastamoinen模型 电离层改正 策略1:广播电离层模型(式(1))
策略2:GIM时间旋转内插(式(5))
策略3:GIM投影函数改正(式(6))
策略4:半合改正模型(式(7))表 2 实验期间SF-PPP定位精度统计结果
m 年份 策略 水平 3D 2014 策略1 0.496 0.957 策略2 0.188 0.635 策略3 0.164 0.642 策略4 0.118 0.476 2021 策略1 0.225 0.660 策略2 0.121 0.646 策略3 0.122 0.655 策略4 0.101 0.469 表 3 2014年不同纬度测站不同策略SF-PPP定位精度统计结果
m 纬度 策略 水平 3D 高纬度 策略1 0.539 0.938 策略2 0.156 0.493 策略3 0.125 0.509 策略4 0.095 0.740 中纬度 策略1 0.251 0.614 策略2 0.121 0.304 策略3 0.115 0.283 策略4 0.097 0.324 低纬度 策略1 0.662 1.259 策略2 0.272 1.029 策略3 0.237 1.053 策略4 0.155 0.383 表 4 2021年不同纬度测站不同策略SF-PPP定位精度统计结果
m 纬度 策略 水平 3D 高纬度 策略1 0.241 0.945 策略2 0.084 0.807 策略3 0.101 0.870 策略4 0.073 0.735 中纬度 策略1 0.171 0.516 策略2 0.128 0.245 策略3 0.130 0.254 策略4 0.099 0.292 低纬度 策略1 0.258 0.544 策略2 0.145 0.846 策略3 0.141 0.810 策略4 0.126 0.395 -
[1] 袁运斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 北京: 中国科学院研究生院(测量与地球物理研究所), 2002. [2] 张小红, 胡佳欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100. [3] 李众, 葛海波, 卜宇航. 几种附电离层约束GNSS单频PPP性能评估[J]. 全球定位系统, 2021, 46(4): 59-65. [4] 王波. 电离层闪烁下的PPP-RTK定位性能评估[J]. 全球定位系统, 2023, 48(1): 37-45. [5] 聂文锋, 胡伍生, 潘树国, 等. 利用GPS双频数据进行区域电离层TEC提取[J]. 武汉大学学报(信息科学版), 2014(9): 6-7. [6] EREN E, MICHEAL S, FLORIAN S, et al. Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter[J]. Annales geophysicae, 2017, 35(2): 263-277. DOI: 10.5194/angeo-35-263-2017 [7] HERNÁNDEZ-PAJARES M, ROMA-DOLLASE D, KRANKOWSKI A, et al. Methodology and consistency of slant and vertical assessments for ionospheric electron content models[J]. Journal of geodesy, 2017, 91(12): 1405-1414. DOI: 10.1007/s00190-017-1032-z [8] LIU T, ZHANG B C, YUAN Y B, et al. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling[J]. Journal of geodesy, 2018, 92(11): 1267-1283. DOI: 10.1007/s00190-018-1118-2 [9] LI Z, WANG N, HERNÁNDEZ-PAJARES M, et al. IGS real-time service for global ionospheric total electron content modeling[J]. Journal of geodesy, 2020, 94(3): 32. DOI: 10.1007/s00190-020-01360-0 [10] MENDOZA L P O, MEZA A M, ARAGON P J M. Near-real-time VTEC maps: New contribution for Latin America Space Weather[J]. Advances in space research, 2020(65): 2235-2246. DOI: 10.1016/j.asr.2019.08.045 [11] 赵金生. 实时电离层格网数据精度评估[J]. 空间科学学报, 2020, 40(6): 1024-1029. [12] 高清文, 赵国忱. CEEMD与GRNN神经网络电离层TEC预报模型[J]. 全球定位系统, 2021, 46(4): 76-84. DOI: 10.12265/j.gnss.2020091401 [13] 熊雯, 王博文, 刘裔文, 等. 基于GNSS TEC的电离层自相关预报误差分析及参数优化[J]. 全球定位系统, 2022, 47(5): 45-50. DOI: 10.12265/j.gnss.2022097 [14] 张研, 王宁波, 李子申, 等. 全球实时电离层模型精度分析——以CAS、CNES、NRCan及UPC产品为例[J]. 大地测量与地球动力学, 2022, 42(10): 1095-1100. [15] 宋秉红. BP神经网络模型的电离层预报精度评估[J]. 全球定位系统, 2023, 48(5): 79-82,102. [16] REN X D, CHEN J, LI X X, et al. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers[J]. GPS solutions, 2019, 23(4): 113. DOI: 10.1007/s10291-019-0904-5 [17] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998[J]. Journal of geodesy, 2009, 83(3/4): 263-275. DOI: 10.1007/S00190-008-0266-1 [18] ROMA-DOLLASE D, HERNÁNDEZ-PAJARES M, KRANKOWSKI A, et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle[J]. Journal of geodesy, 2018, 92(6): 691-706. DOI: 10.1007/s00190-017-1088-9 [19] 盛传贞, 张京奎, 张宝成. 不同全球电离层格网产品在中国区域的应用精度评估与分析[J]. 全球定位系统, 2021, 46(4): 8-15. [20] 王华峰, 张艳茹, 蔡红涛, 等. 多GNSS监测下中国区域电离层格网模型可用性分析[J]. 全球定位系统, 2022, 47(2): 60-65. DOI: 10.12265/j.gnss.2021050602 [21] 肖勇. 高纬度区域GNSS多系统电离层建模及其精度评估[J]. 全球定位系统, 2023, 48(3): 33-38. [22] KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE transactions on aerospace and electronic systems, 1987, AES-23(3): 325-331. DOI: 10.1109/TAES.1987.310829 [23] BI T, AN J C, YANG J, et al. A modified Klobuchar model for single-frequency GNSS users over the polar region[J]. Advances in space research, 2017, 59(3): 833-842. DOI: 10.1016/j.asr.2016.10.029 [24] WANG N B, LI Z S, YUAN Y B, et al. Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model[J]. Advances in space research, 2019, 63(2): 886-896. DOI: 10.1016/j.asr.2018.10.006 [25] ZHANG Q, LIU Z Y, HU Z G, et al. A modified BDS Klobuchar model considering hourly estimated night-time delays[J]. GPS solutions, 2022, 26(2): 49. DOI: 10.1007/s10291-022-01236-0 [26] HOQUE M M, JAKOWSKI N, BERDERMANN J. Ionospheric correction using NTCM driven by GPS Klobuchar coefficients for GNSS applications[J]. GPS solutions, 2017, 21(4): 1563-1572. DOI: 10.1007/s10291-017-0632-7 [27] ZHANG X H, MA F J, REN X D, et al. Evaluation of NTCM-BC and a proposed modification for single-frequency positioning[J]. GPS solutions, 2017, 21(4): 1535-1548. DOI: 10.1007/s10291-017-0631-8 [28] HOQUE M M, JAKOWSKI N, ORÚS-PÉREZ R. Fast ionospheric correction using Galileo Az coefficients and the NTCM model[J]. GPS solutions, 2019, 23(2): 41. DOI: 10.1007/s10291-019-0833-3 [29] WANG N B, YUAN Y B, LI Z S, et al. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections[J]. Advances in space research, 2016, 57(7): 1555-1569. DOI: 10.1016/j.asr.2016.01.010 [30] WANG N B, LI Z S, LI M, et al. GPS, BDS and Galileo ionospheric correction models: an evaluation in range delay and position domain[J]. Journal of atmospheric and solar-terrestrial physics, 2018(170): 83-91. DOI: 10.1016/j.jastp.2018.02.014 [31] 聂建亮. GPS精密单点定位算法及故障诊断研究[D]. 西安:长安大学, 2010. [32] SCHAER S, GURTNER W, FELTENS J. IONEX: the ionosphere map exchange format version 1[C]// Proceedings of the IGS Analysis Center Workshop, 1998. [33] 冯建迪, 王正涛, 赵珍珍. 卫星导航服务的全球电离层时变特性分析[J]. 测绘科学, 2015, 40(2): 13-17.