留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北斗三号PPP-B2b信号精密单点定位服务可用性分析

许扬胤 任夏 明锋

许扬胤, 任夏, 明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析[J]. 全球定位系统, 2024, 49(3): 10-19. doi: 10.12265/j.gnss.2023214
引用本文: 许扬胤, 任夏, 明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析[J]. 全球定位系统, 2024, 49(3): 10-19. doi: 10.12265/j.gnss.2023214
XU Yangyin, REN Xia, MING Feng. Availability analysis of BDS-3 PPP-B2b real-time precise point positioning service[J]. GNSS World of China, 2024, 49(3): 10-19. doi: 10.12265/j.gnss.2023214
Citation: XU Yangyin, REN Xia, MING Feng. Availability analysis of BDS-3 PPP-B2b real-time precise point positioning service[J]. GNSS World of China, 2024, 49(3): 10-19. doi: 10.12265/j.gnss.2023214

北斗三号PPP-B2b信号精密单点定位服务可用性分析

doi: 10.12265/j.gnss.2023214
基金项目: 国家自然科学基金基础科学中心项目(42388102);地理信息工程国家重点实验室基金(SKLGIE2022-ZZ-02)
详细信息
    作者简介:

    许扬胤:(1992—),男,博士,助理研究员,研究方向为GNSS精密定位与质量控制. E-mail: xu_yangyin@163.com

    任夏:(1988—),女,博士,助理研究员,研究方向为GNSS自主导航. E-mail: renxia1015@163.com

    明锋:(1982—),男,博士,助理研究员,研究方向为大地测量与时空基准. E-mail: fengmingchyjs@outlook.com

    通讯作者:

    许扬胤 E-mail: xu_yangyin@163.com

  • 中图分类号: P228.41

Availability analysis of BDS-3 PPP-B2b real-time precise point positioning service

  • 摘要: 针对北斗三号(BeiDou-3 Navigation Satellite System,BDS-3) PPP-B2b信号精密单点定位(precise point positioning,PPP)服务可用性,以改正参数的可用性比例、平均可用卫星数和改正参数匹配性为指标进行了系统分析. 结果表明:在中国及周边地区,BDS-3 PPP-B2b信号改正参数的可用性在71%~95%,且在北京地区达到最大,GPS改正参数可用性在68.5%~88.6%,差于BDS-3. 中国及周边地区用户缺少PPP-B2b信号改正参数的卫星观测弧段主要集中在低高度角时段,其改正参数的可用性随着截止高度角的增大而增大;BDS-3、GPS和BDS-3/GPS在中国及周边地区的改正数可用平均卫星数分别约为8颗、7颗和15颗,可以确保有效的实时PPP (real time PPP,RT-PPP)服务性能,但平均约有1颗BDS-3卫星和2颗GPS卫星因为缺少PPP-B2b信号改正参数而无法参与RT-PPP服务;对于赤道以南地区,单个系统基本无法提供有效的PPP-B2b服务,其改正参数的平均可用性低于50%,但BDS-3/GPS双系统在部分低纬度地区可提供约7~11颗的可用卫星;由于轨道改正参数和钟差改正参数更新频率不一致,在钟差改正数版本号(IOD Corr)参数更新时,会出现短暂的改正参数不匹配情况.

     

  • 图  1  BDS-3 PPP-B2b信号PPP服务覆盖区域

    图  2  PPP-B2b信号改正参数EAR分布

    图  3  BDS-3与GPSEAR的差值分布

    图  4  改正参数可用平均卫星数和观测可用平均卫星数与改正参数可用平均卫星数的差值

    图  5  轨道与钟差改正参数IOD Corr时间序列

    表  1  PPP-B2b信号改正电文信息类型

    信息类型 信息内容
    1 卫星掩码
    2 卫星轨道改正数及用户测距精度指数
    3 差分偏码
    4 卫星钟差改正数
    5 用户测距精度指数
    6 钟差改正数与轨道改正数-组合1
    7 钟差改正数与轨道改正数-组合2
    8~62 预留
    63
    下载: 导出CSV

    表  2  PPP-B2b信号改正参数EAR统计情况 %

    卫星 区域A 区域B 区域C
    min max mean min max mean min max mean
    BDS-3 IGSO 81.3 99.7 96.7 79.2 99.7 94.9 53.1 89.2 69.5
    BDS-3 MEO 62.9 94.1 82.7 42.8 94.1 73.7 16.7 69.3 41.1
    BDS-3 71.0 95.4 85.9 51.6 95.4 78.1 21.8 72.1 47.2
    GPS 68.5 88.6 81.5 46.1 88.6 71.0 11.3 66.0 35.7
    BDS-3/GPS 69.8 91.6 83.8 49.9 91.6 74.6 16.7 69.2 41.5
    下载: 导出CSV

    表  3  区域A PPP-B2b信号改正参数EAR随高度角变化情况 %

    卫星10°20°30°40°
    minmaxmeanminmaxmeanminmaxmeanminmaxmean
    BDS-3 IGSO81.399.796.793.899.799.098.199.799.599.499.999.6
    BDS-3 MEO62.994.182.770.998.289.378.899.393.985.099.496.7
    BDS-371.095.485.978.998.691.883.799.495.588.699.597.6
    GPS68.588.681.577.091.387.181.992.890.484.695.092.1
    BDS-3/GPS69.891.683.878.094.789.683.596.393.287.197.595.2
    下载: 导出CSV

    表  4  区域B PPP-B2b信号改正参数EAR随高度角变化情况 %

    卫星10°20°30°40°
    minmaxmeanminmaxmeanminmaxmeanminmaxmean
    BDS-3 IGSO79.299.794.979.299.797.187.499.798.793.599.999.3
    BDS-3 MEO42.894.173.745.198.280.647.199.386.548.999.490.6
    BDS-351.695.478.153.398.684.351.499.489.249.099.592.3
    GPS46.188.671.049.491.377.543.992.882.747.095.086.2
    BDS-3/GPS49.991.674.652.294.781.052.996.386.153.497.589.4
    下载: 导出CSV

    表  5  ANSat-PPP-B2b统计

    系统 区域A 区域B 区域C
    min max mean min max mean min max mean
    BDS-3 6.5 8.6 7.9 5.0 8.6 7.3 2.0 7.8 4.5
    GPS 6.2 7.5 7.0 4.4 7.5 6.4 1.1 6.3 3.2
    BDS-3/GPS 12.9 15.9 14.9 9.7 15.9 13.7 3.2 14.1 7.7
    下载: 导出CSV

    表  6  ANSat与ANSat-PPP-B2b差值统计

    系统 区域A 区域B 区域C
    min max mean min max mean min max mean
    BDS-3 0.4 2.8 1.3 0.4 4.7 2.1 3.0 7.2 4.9
    GPS 1.0 2.9 1.6 1.0 5.1 2.6 3.2 8.7 5.8
    BDS-3/GPS 1.5 5.7 2.9 1.5 9.8 4.7 6.2 15.9 10.6
    下载: 导出CSV

    表  7  区域A的ANSat-PPP-B2b随高度角变化情况

    系统 10° 20° 30° 40°
    min max mean min max mean min max mean min max mean
    BDS-3 6.5 8.6 7.9 5.3 7.4 6.8 4.3 6.2 5.6 3.17 4.82 4.33
    GPS 6.2 7.5 7.0 5.2 6.0 5.8 4.1 4.7 4.5 2.66 3.54 3.27
    BDS-3/GPS 12.9 15.9 14.9 10.5 13.4 12.5 8.5 10.8 10.1 5.83 8.30 7.61
    下载: 导出CSV

    表  8  区域B的ANSat-PPP-B2b数随高度角变化情况

    系统 10° 20° 30° 40°
    min max mean min max mean min max mean min max mean
    BDS-3 5.0 8.6 7.3 3.8 7.4 6.2 2.1 6.2 4.9 1.18 4.82 3.61
    GPS 4.4 7.5 6.4 3.6 6.0 5.2 2.0 4.7 4.1 1.35 3.54 2.93
    BDS-3/GPS 9.7 15.9 13.7 7.6 13.4 11.4 4.6 10.8 8.9 2.82 8.30 6.53
    下载: 导出CSV
  • [1] MALYS S, JENSEN P A. Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment[J]. Geophysical research letters, 1990, 17(5): 651-654. DOI: 10.21236/ada211955
    [2] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of geophysical research, 1997, 102(B3): 5005-5017. DOI: 10.1029/96JB03860
    [3] KOUBA J, HEROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883
    [4] RTCM Special Committee. RTCM Standard 10403.3 Diferential GNSS (Global Navigation Satellite Systems) services-version 3[DB/OL]. [2023-12-13]. RTCM Special Committee No. 104, Arlington, TX, USA, 2016. https://wenku.csdn.net/answer/4pbkq26yj6
    [5] WEBER G, MERVART L, LUKES Z, et al. Real-time clock and orbit corrections for improved point positioning via NTRIP[C]//The 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), 2007: 1992-1998.
    [6] LEANDRO R, LANDAU H, NITSCHKE M, et al. RTX positioning: the next generation of cm-accurate real-time GNSS positioning[C]//International Technical Meeting of the Satellite Division of the Institute of Navigation, 2011: 1460-1475.
    [7] BOOTH J S, SNOW R N. An evaluation of omnistar XP and PPP as a Replacement for DGPS in airborne applications[C]//The 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), 2009: 1188-1194.
    [8] DAI L W, CHEN Y Q, LIE A, et al. StarFire SF3: worldwide centimeter-accurate real time GNSS positioning[C]//The 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016) , 2016: 3295-3320.
    [9] NIE Z X, YANG H Z, ZHOU P Y, et al. Quality assessment of CNES real-time ionospheric products[J]. GPS solutions, 2019, 23(1): 1-15. DOI: 10.1007/s10291-018-0802-2
    [10] NIE Z X, LIU F T, GAO Y. Real-time precise point positioning with a low-cost dual-frequency GNSS device[J]. GPS solutions, 2020, 24(1): 1-11. DOI: 10.1007/s10291-019-0922-3
    [11] HEßELBARTH A, WANNINGER L. SBAS orbit and satellite clock corrections for PPP[J]. GPS solutions, 2013, 17(4): 465-473. DOI: 10.1007/s10291-012-0292-6
    [12] LI L, JIA C, ZHAO L, et al. Real-time single frequency precise point positioning using SBAS corrections[J]. Sensors, 2016, 16(8): 1261. DOI: 10.3390/s16081261
    [13] CHEN J P, WANG A H, ZHANG Y Z, et al. BDS satellite-based augmentation service correction parameters and performance assessment[J]. Remote sensing, 2020, 12(5): 766. DOI: 10.3390/rs12050766
    [14] JI S Y, SUN Z R, WENG D J, et al. High-precision ocean navigation with single set of BeiDou short-message device[J]. Journal of geodesy, 2019, 93(1): 1589-1602. DOI: 10.1007/s00190-019-01273-7
    [15] NIE Z X, WANG B Y, WANG Z J, et al. An offshore real-time precise point positioning technique based on a single set of BeiDou short-message communication devices[J]. Journal of geodesy, 2020, 94(9): 78. DOI: 10.1007/S00190-020-01411-6
    [16] YANG Y X, GAO W G, GUO S R, et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1): 7-18. DOI: 10.1002/NAVI.291
    [17] LU J, GUO X, SU C. Global capabilities of BeiDou navigation satellite system[J]. Satell navigation, 2020, 1(1): 303-307. DOI: 10.1186/s43020-020-00025-9
    [18] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件精密单点定位服务信号PPP-B2b(1.0版) [DB/OL]. (2020-07)[2023-12-13]. 2020. http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362062482940.pdf
    [19] LIU C, GAO W G, LIU T X, et al. Design and implementation of a BDS precise point positioning service[J]. Navigation:journal of the institute of navigation, 2020, 67(4): 875-891. DOI: 10.1002/navi.392
    [20] LU X C, CHEN L, NAN S, et al. Decoding PPP corrections from BDS B2b signals using a software-defined receiver: an initial performance evaluation[J]. IEEE sensors journal, 2021, 21(6): 7871-7883. DOI: 10.1109/JSEN.2020.3041486
    [21] REN Z L, GONG H, PENG J, et al. Performance assessment of real-time precise point positioning using BDS PPP-B2b service signal[J]. Advances in space research, 2021, 68(8): 3242-3254. DOI: 10.1016/j.asr.2021.06.006
    [22] NIE Z X, XU X F, WANG Z J, et al. Initial assessment of BDS PPP-B2b service: precision of orbit and clock corrections, and PPP performance[J]. Remote sensing, 2021, 13(11): 2050. DOI: 10.3390/rs13112050
    [23] 宋伟伟, 赵新科, 楼益栋, 等. 北斗三号 PPP-B2b 服务性能评估[J]. 武汉大学学报(信息科学版), 2023, 48(3): 408-415.
    [24] 蔡子睿, 方荣新, 胡冰燕, 等. 北斗三号B2b信号改正广播星历精度评估及PPP应用[J]. 全球定位系统, 2023, 48(1): 64-70.
    [25] 姜蔚, 陈向东, 邢云剑, 等. 北斗三号PPP-B2b服务的卫星定轨精度评估[J]. 全球定位系统, 2023, 48(1): 32-36.
    [26] XU X F, NIE Z X, WANG Z J, et al. An improved BDS-3 PPP-B2b positioning approach by estimating signal in space range errors[J]. GPS solutions, 2023, 27(3): 1-14. DOI: 10.1007/s10291-023-01455-z
    [27] GE Y L, CAO X Y, LYU D Q, et al. An investigation of PPP time transfer via BDS-3 PPP-B2b service [J]. GPS solutions, 2023, 27(2): 1-17. DOI: 10.1007/s10291-023-01402-y
    [28] 中国卫星导航系统管理办公室. 北斗卫星导航系统应用服务体系(1.0版) [DB/OL]. (2019-12)[2023-12-13]. 2019. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227333024390305.pdf
    [29] YANG Y X, MAO Y, SUN B J. Basic performance and future developments of BeiDou Global Navigation Satellite System[J]. Satellite navigation, 2020, 1(1): 1-8. DOI: 10.1186/s43020-019-0006-0
    [30] YANG Y, XU Y, LI J, et al. Progress and performance evaluation of BeiDou Global Navigation Satellite System: data analysis based on BDS-3 demonstration system[J]. Science china-earth sciences, 2018, 61(5): 614-624. DOI: 10.1007/s11430-017-9186-9
    [31] 魏子卿, 吴富梅, 刘光明. 北斗坐标系[J]. 测绘学报, 2019, 48(7): 805-809.
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  39
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 录用日期:  2023-11-17

目录

    /

    返回文章
    返回