Availability analysis of BDS-3 PPP-B2b real-time precise point positioning service
-
摘要: 针对北斗三号(BeiDou-3 Navigation Satellite System,BDS-3) PPP-B2b信号精密单点定位(precise point positioning,PPP)服务可用性,以改正参数的可用性比例、平均可用卫星数和改正参数匹配性为指标进行了系统分析. 结果表明:在中国及周边地区,BDS-3 PPP-B2b信号改正参数的可用性在71%~95%,且在北京地区达到最大,GPS改正参数可用性在68.5%~88.6%,差于BDS-3. 中国及周边地区用户缺少PPP-B2b信号改正参数的卫星观测弧段主要集中在低高度角时段,其改正参数的可用性随着截止高度角的增大而增大;BDS-3、GPS和BDS-3/GPS在中国及周边地区的改正数可用平均卫星数分别约为8颗、7颗和15颗,可以确保有效的实时PPP (real time PPP,RT-PPP)服务性能,但平均约有1颗BDS-3卫星和2颗GPS卫星因为缺少PPP-B2b信号改正参数而无法参与RT-PPP服务;对于赤道以南地区,单个系统基本无法提供有效的PPP-B2b服务,其改正参数的平均可用性低于50%,但BDS-3/GPS双系统在部分低纬度地区可提供约7~11颗的可用卫星;由于轨道改正参数和钟差改正参数更新频率不一致,在钟差改正数版本号(IOD Corr)参数更新时,会出现短暂的改正参数不匹配情况.
-
关键词:
- 北斗三号(BDS-3) /
- PPP-B2b信号改正参数 /
- 实时精密单点定位(RT-PPP) /
- 可用性 /
- 可用卫星数 /
- 匹配性
Abstract: Aiming at the availability of BDS-3 PPP-B2b service, a systematic analysis has been conducted towards the availability ratio of PPP-B2b corrections, the average number of satellites with available corrections and the matching characteristics of PPP-B2b corrections. The results show that in China and surrounding areas, the availability of BDS-3 PPP-B2b corrections is between 71% and 95%, and reaches the maximum in Beijing. While that for the GPS system is between 68.5% and 88.6%, which is worse than the BDS-3. The satellite observation arcs lack of PPP-B2b corrections are mainly concentrated in low elevation angle periods for users in China and surrounding areas, and the availability of PPP-B2b corrections will increase with the increase of cut-off elevation angle. The average number of satellites with available PPP-B2b corrections for BDS-3, GPS and BDS-3/GPS systems in China and surrounding areas is about 8, 7 and 15 respectively, which can ensure effective real-time PPP service performance. However, on average, about 1 BDS-3 satellite and 2 GPS satellites cannot participate in the real-time PPP positioning due to the lack of PPP-B2b corrections for users in the area. For areas south of the equator, BDS-3 only or GPS-only system is basically unable to provide effective real-time PPP services with the average availability of PPP-B2b correction being less than 50%, but the BDS-3/GPS dual system can provide about 7 to 11 available satellites in some low latitude areas. Users should be noticed that there will be a temporary mismatching state between the orbit and clock offset corrections each time when the IOD Corr parameter changes due to the different updating frequency. -
表 1 PPP-B2b信号改正电文信息类型
信息类型 信息内容 1 卫星掩码 2 卫星轨道改正数及用户测距精度指数 3 差分偏码 4 卫星钟差改正数 5 用户测距精度指数 6 钟差改正数与轨道改正数-组合1 7 钟差改正数与轨道改正数-组合2 8~62 预留 63 空 表 2 PPP-B2b信号改正参数EAR统计情况
% 卫星 区域A 区域B 区域C min max mean min max mean min max mean BDS-3 IGSO 81.3 99.7 96.7 79.2 99.7 94.9 53.1 89.2 69.5 BDS-3 MEO 62.9 94.1 82.7 42.8 94.1 73.7 16.7 69.3 41.1 BDS-3 71.0 95.4 85.9 51.6 95.4 78.1 21.8 72.1 47.2 GPS 68.5 88.6 81.5 46.1 88.6 71.0 11.3 66.0 35.7 BDS-3/GPS 69.8 91.6 83.8 49.9 91.6 74.6 16.7 69.2 41.5 表 3 区域A PPP-B2b信号改正参数EAR随高度角变化情况
% 卫星 10° 20° 30° 40° min max mean min max mean min max mean min max mean BDS-3 IGSO 81.3 99.7 96.7 93.8 99.7 99.0 98.1 99.7 99.5 99.4 99.9 99.6 BDS-3 MEO 62.9 94.1 82.7 70.9 98.2 89.3 78.8 99.3 93.9 85.0 99.4 96.7 BDS-3 71.0 95.4 85.9 78.9 98.6 91.8 83.7 99.4 95.5 88.6 99.5 97.6 GPS 68.5 88.6 81.5 77.0 91.3 87.1 81.9 92.8 90.4 84.6 95.0 92.1 BDS-3/GPS 69.8 91.6 83.8 78.0 94.7 89.6 83.5 96.3 93.2 87.1 97.5 95.2 表 4 区域B PPP-B2b信号改正参数EAR随高度角变化情况
% 卫星 10° 20° 30° 40° min max mean min max mean min max mean min max mean BDS-3 IGSO 79.2 99.7 94.9 79.2 99.7 97.1 87.4 99.7 98.7 93.5 99.9 99.3 BDS-3 MEO 42.8 94.1 73.7 45.1 98.2 80.6 47.1 99.3 86.5 48.9 99.4 90.6 BDS-3 51.6 95.4 78.1 53.3 98.6 84.3 51.4 99.4 89.2 49.0 99.5 92.3 GPS 46.1 88.6 71.0 49.4 91.3 77.5 43.9 92.8 82.7 47.0 95.0 86.2 BDS-3/GPS 49.9 91.6 74.6 52.2 94.7 81.0 52.9 96.3 86.1 53.4 97.5 89.4 表 5 ANSat-PPP-B2b统计
系统 区域A 区域B 区域C min max mean min max mean min max mean BDS-3 6.5 8.6 7.9 5.0 8.6 7.3 2.0 7.8 4.5 GPS 6.2 7.5 7.0 4.4 7.5 6.4 1.1 6.3 3.2 BDS-3/GPS 12.9 15.9 14.9 9.7 15.9 13.7 3.2 14.1 7.7 表 6 ANSat与ANSat-PPP-B2b差值统计
系统 区域A 区域B 区域C min max mean min max mean min max mean BDS-3 0.4 2.8 1.3 0.4 4.7 2.1 3.0 7.2 4.9 GPS 1.0 2.9 1.6 1.0 5.1 2.6 3.2 8.7 5.8 BDS-3/GPS 1.5 5.7 2.9 1.5 9.8 4.7 6.2 15.9 10.6 表 7 区域A的ANSat-PPP-B2b随高度角变化情况
系统 10° 20° 30° 40° min max mean min max mean min max mean min max mean BDS-3 6.5 8.6 7.9 5.3 7.4 6.8 4.3 6.2 5.6 3.17 4.82 4.33 GPS 6.2 7.5 7.0 5.2 6.0 5.8 4.1 4.7 4.5 2.66 3.54 3.27 BDS-3/GPS 12.9 15.9 14.9 10.5 13.4 12.5 8.5 10.8 10.1 5.83 8.30 7.61 表 8 区域B的ANSat-PPP-B2b数随高度角变化情况
系统 10° 20° 30° 40° min max mean min max mean min max mean min max mean BDS-3 5.0 8.6 7.3 3.8 7.4 6.2 2.1 6.2 4.9 1.18 4.82 3.61 GPS 4.4 7.5 6.4 3.6 6.0 5.2 2.0 4.7 4.1 1.35 3.54 2.93 BDS-3/GPS 9.7 15.9 13.7 7.6 13.4 11.4 4.6 10.8 8.9 2.82 8.30 6.53 -
[1] MALYS S, JENSEN P A. Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment[J]. Geophysical research letters, 1990, 17(5): 651-654. DOI: 10.21236/ada211955 [2] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of geophysical research, 1997, 102(B3): 5005-5017. DOI: 10.1029/96JB03860 [3] KOUBA J, HEROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883 [4] RTCM Special Committee. RTCM Standard 10403.3 Diferential GNSS (Global Navigation Satellite Systems) services-version 3[DB/OL]. [2023-12-13]. RTCM Special Committee No. 104, Arlington, TX, USA, 2016. https://wenku.csdn.net/answer/4pbkq26yj6 [5] WEBER G, MERVART L, LUKES Z, et al. Real-time clock and orbit corrections for improved point positioning via NTRIP[C]//The 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), 2007: 1992-1998. [6] LEANDRO R, LANDAU H, NITSCHKE M, et al. RTX positioning: the next generation of cm-accurate real-time GNSS positioning[C]//International Technical Meeting of the Satellite Division of the Institute of Navigation, 2011: 1460-1475. [7] BOOTH J S, SNOW R N. An evaluation of omnistar XP and PPP as a Replacement for DGPS in airborne applications[C]//The 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), 2009: 1188-1194. [8] DAI L W, CHEN Y Q, LIE A, et al. StarFire SF3: worldwide centimeter-accurate real time GNSS positioning[C]//The 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016) , 2016: 3295-3320. [9] NIE Z X, YANG H Z, ZHOU P Y, et al. Quality assessment of CNES real-time ionospheric products[J]. GPS solutions, 2019, 23(1): 1-15. DOI: 10.1007/s10291-018-0802-2 [10] NIE Z X, LIU F T, GAO Y. Real-time precise point positioning with a low-cost dual-frequency GNSS device[J]. GPS solutions, 2020, 24(1): 1-11. DOI: 10.1007/s10291-019-0922-3 [11] HEßELBARTH A, WANNINGER L. SBAS orbit and satellite clock corrections for PPP[J]. GPS solutions, 2013, 17(4): 465-473. DOI: 10.1007/s10291-012-0292-6 [12] LI L, JIA C, ZHAO L, et al. Real-time single frequency precise point positioning using SBAS corrections[J]. Sensors, 2016, 16(8): 1261. DOI: 10.3390/s16081261 [13] CHEN J P, WANG A H, ZHANG Y Z, et al. BDS satellite-based augmentation service correction parameters and performance assessment[J]. Remote sensing, 2020, 12(5): 766. DOI: 10.3390/rs12050766 [14] JI S Y, SUN Z R, WENG D J, et al. High-precision ocean navigation with single set of BeiDou short-message device[J]. Journal of geodesy, 2019, 93(1): 1589-1602. DOI: 10.1007/s00190-019-01273-7 [15] NIE Z X, WANG B Y, WANG Z J, et al. An offshore real-time precise point positioning technique based on a single set of BeiDou short-message communication devices[J]. Journal of geodesy, 2020, 94(9): 78. DOI: 10.1007/S00190-020-01411-6 [16] YANG Y X, GAO W G, GUO S R, et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1): 7-18. DOI: 10.1002/NAVI.291 [17] LU J, GUO X, SU C. Global capabilities of BeiDou navigation satellite system[J]. Satell navigation, 2020, 1(1): 303-307. DOI: 10.1186/s43020-020-00025-9 [18] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件精密单点定位服务信号PPP-B2b(1.0版) [DB/OL]. (2020-07)[2023-12-13]. 2020. http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362062482940.pdf [19] LIU C, GAO W G, LIU T X, et al. Design and implementation of a BDS precise point positioning service[J]. Navigation:journal of the institute of navigation, 2020, 67(4): 875-891. DOI: 10.1002/navi.392 [20] LU X C, CHEN L, NAN S, et al. Decoding PPP corrections from BDS B2b signals using a software-defined receiver: an initial performance evaluation[J]. IEEE sensors journal, 2021, 21(6): 7871-7883. DOI: 10.1109/JSEN.2020.3041486 [21] REN Z L, GONG H, PENG J, et al. Performance assessment of real-time precise point positioning using BDS PPP-B2b service signal[J]. Advances in space research, 2021, 68(8): 3242-3254. DOI: 10.1016/j.asr.2021.06.006 [22] NIE Z X, XU X F, WANG Z J, et al. Initial assessment of BDS PPP-B2b service: precision of orbit and clock corrections, and PPP performance[J]. Remote sensing, 2021, 13(11): 2050. DOI: 10.3390/rs13112050 [23] 宋伟伟, 赵新科, 楼益栋, 等. 北斗三号 PPP-B2b 服务性能评估[J]. 武汉大学学报(信息科学版), 2023, 48(3): 408-415. [24] 蔡子睿, 方荣新, 胡冰燕, 等. 北斗三号B2b信号改正广播星历精度评估及PPP应用[J]. 全球定位系统, 2023, 48(1): 64-70. [25] 姜蔚, 陈向东, 邢云剑, 等. 北斗三号PPP-B2b服务的卫星定轨精度评估[J]. 全球定位系统, 2023, 48(1): 32-36. [26] XU X F, NIE Z X, WANG Z J, et al. An improved BDS-3 PPP-B2b positioning approach by estimating signal in space range errors[J]. GPS solutions, 2023, 27(3): 1-14. DOI: 10.1007/s10291-023-01455-z [27] GE Y L, CAO X Y, LYU D Q, et al. An investigation of PPP time transfer via BDS-3 PPP-B2b service [J]. GPS solutions, 2023, 27(2): 1-17. DOI: 10.1007/s10291-023-01402-y [28] 中国卫星导航系统管理办公室. 北斗卫星导航系统应用服务体系(1.0版) [DB/OL]. (2019-12)[2023-12-13]. 2019. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227333024390305.pdf [29] YANG Y X, MAO Y, SUN B J. Basic performance and future developments of BeiDou Global Navigation Satellite System[J]. Satellite navigation, 2020, 1(1): 1-8. DOI: 10.1186/s43020-019-0006-0 [30] YANG Y, XU Y, LI J, et al. Progress and performance evaluation of BeiDou Global Navigation Satellite System: data analysis based on BDS-3 demonstration system[J]. Science china-earth sciences, 2018, 61(5): 614-624. DOI: 10.1007/s11430-017-9186-9 [31] 魏子卿, 吴富梅, 刘光明. 北斗坐标系[J]. 测绘学报, 2019, 48(7): 805-809.