Tidal signal extraction under high noise conditions
-
摘要: GNSS浮标由于特殊的观测环境,数据质量普遍较差,这导致其坐标时间序列存在较高的噪声,并且存在某些阶跃(或称跳变). 针对该问题,本文提出了一种基于滑动窗的双边累积和(cumulative sum,CUSUM)的阶跃探测和修复方法,该方法在非侵入式负荷监测领域已有广泛应用. 对于GNSS精密单点定位(precise point positioning, PPP)计算所得海面高程(sea surface height, SSH),用该算法探测阶跃并修复后与验潮站参考数据对比,其均方根误差(root mean square error, RMSE)提升了75.5%,相关性提升了7.46%;对于从修复前后的高程时间序列提取的有效波高(significant wave height, SWH),以海洋浮标(wavebuoy,WB)测量结果作为参考,其RMSE提升了65.22%,相关性提升了208.28%. 研究结果表明:该方法可以有效提高GNSS技术反演海浪参数的精确度和可靠性,为GNSS技术在潮汐信号提取提供有价值的参考,对于提高海洋工程安全性和经济效益具有积极意义.
-
关键词:
- 全球卫星导航系统(GNSS)浮标 /
- 双边累计和(CUSUM) /
- 精密单点定位(PPP) /
- 有效波高 /
- 阶跃探测
Abstract: In response to the accuracy issue in tidal signal calculation during Global Navigation Satellite System (GNSS) buoy ocean measurements, particularly in high-noise conditions affecting wave parameter calculations, this paper proposes a novel step detection and restoration method based on the sliding window cumulative sum (CUSUM) algorithm, which has been extensively utilized in non-intrusive load monitoring. The algorithm is applied to detect and correct step discontinuities in the sea surface height (SSH) obtained from precise point positioning (PPP) computations and the significant wave height (SWH) extracted from the SSH time series. The performance of the method is evaluated by comparing it with reference data from tide gauge stations and dedicated wave buoys. The results demonstrate that the proposed method significantly improves the accuracy and reliability of GNSS technology in inverting wave parameters. The root mean square error (RMSE) of SSH is enhanced by 75.5%, and the correlation is increased by 7.46%. Moreover, the RMSE of SWH is improved by 65.22%, and the correlation is boosted by 208.28%. These findings underscore the effectiveness of the proposed method in enhancing the accuracy of wave parameter extraction using GNSS technology. The method's implications for enhancing marine engineering safety and economic benefits are also highlighted, making it a valuable contribution to GNSS step detection and providing valuable insights into the extraction and application of tidal signals using GNSS technology. -
表 1 PRIDE-PPPAR参数配置
参数 配置 严格模式 是 定位模型 Kinematic ZTD模型 STO HTG模型 NON 表 2 修复前后SSH与验潮站的RMSE和相关系数
SSH RMSE/m 相关系数 平均误差/m S1 0.395 0.925 0.261 S2 0.096 0.994 0.074 表 3 修复前后SWH与WB的RMSE和相关系数
SWH RMSE/m 相关系数 平均误差/m S1 0.161 0.290 0.066 S2 0.056 0.894 0.022 -
[1] 王兆徽, 蒋兴伟. 海洋灾害抵御与捕捞养殖管控的路径选择与科技策略[J]. 海洋开发与管理, 2023, 40(5): 3-16. [2] 赵丽玲. 辽宁沿海经济带经济与海洋环境可持续发展研究[D]. 大连: 辽宁师范大学, 2013. [3] 刘会, 马鑫程, 辛明真, 等. GNSS浮标导出多普勒速度测波应用研究[J]. 山东科技大学学报(自然科学版), 2020, 39(2): 36-43. [4] 范小猛. GNSS坐标时间序列分析及全球速度场建模研究[D]. 重庆: 重庆交通大学, 2023. [5] ZHAI W L, ZHU J H, CHEN C T, et al. Obtaining accurate measurements of the sea surface height from a GPS buoy[J]. Acta oceanologica sinica, 2023, 42(6): 78-88. DOI: 10.1007/s13131-022-2109-y [6] YANG L, XU Y S, ZHOU X H, et al. Calibration of an airborne interferometric radar Altimeter over the Qingdao coast sea, China[J]. Remote sensing, 2020, 12(10): 1651. DOI: 10.3390/rs12101651 [7] 王洁, 王娜子, 徐天河, 等. 组合GNSS观测值反演海面高度[J]. 测绘学报, 2022, 51(2): 201-211. DOI: 10.11947/j.AGCS.2022.20200367 [8] XU X Y, XU K, SHEN H, et al. Sea surface height and significant wave height calibration methodology by a GNSS buoy campaign for HY-2A altimeter[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(11): 5252-5261. DOI: 10.1109/JSTARS.2016.2584626 [9] CHEN C T, ZHU J H, ZHAI W L, et al. Absolute calibration of HY-2A and Jason-2 altimet-ers for sea surface height using GPS buoy in Qinglan, China[J]. Journal of oceanology and limnology, 2019, 37(5): 1533-1541. DOI: 10.1007/978-3-642-12796-0_11 [10] ZHU L, YANG L, XU Y S, et al. Retrieving wave parameters from GNSS buoy measurements using the PPP mode[J]. IEEE geoscience and remote sensing letters, 2022, 19(5): 1-5. DOI: 10.1109/LGRS.2020.3041846 [11] 牟哲晗, 郭博峰, 唐龙. 海洋环境对GPS多路径效应影响分析[J]. 海洋学研究, 2019, 37(4): 36-47. DOI: 10.3969/j.issn.1001-909X.2019.04.004 [12] CHEN C, TIAO G C. Random level-shift time series models, ARIMA approximations, and level-shift detection[J]. Journal of business and economic statistics, 2012, 8(1): 83-97. DOI: 10.1080/07350015.1990.10509779 [13] GAZEAUX J, WILLIAMS S, KING M A, et al. Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment[J]. Journal of geophysical research, 2013, 118(5): 2397-2407. DOI: 10.1002/jgrb.50152 [14] 姚宜斌, 冉启顺, 张豹. 改进的启发式分割算法在GNSS坐标时间序列阶跃探测中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(5): 648-654. [15] 牛卢璐, 贾宏杰. 一种适用于非侵入式负荷监测的暂态事件检测算法[J]. 电力系统自动化, 2011, 35(9): 30-35. [16] 丁世敬, 王晓静, 雍静, 等. 基于事件检测的非侵入式负荷识别方法研究[J]. 建筑电气, 2017, 36(7): 57-64. [17] PAGE E S. Continuous inspection schemes[J]. Biometrika, 1954, 41(1-2): 100-115. DOI. 10.1093/biomet/41.1-2.100 [18] OMRI M, ANTHONY P, PRATYUSH S, et al. Percutaneous transforaminal endoscopic discectomy learning curve: a cusum analysis[J]. Spine, 2023(48): 108-1516. DOI: 10.1097/BRS.0000000000004730 [19] 谭常春, 江敏. CUSUM型统计量中调节参数对变点估计效果的影响分析[J]. 中国科学技术大学学报, 2020, 50(7): 920-928. [20] RIGHI L, AMARSY R, PICAT M Q, et al. Monitoring antimicrobial resistance (AMR) using CUSUM control charts[J]. European journal of clinical microbiology & infectious diseases: official publication of the european society of clinical microbiology, 2017, 36(8): 1519-1525. DOI: 10.1007/s10096-017-2961-4 [21] KIM H, LEE S. Improved CUSUM monitoring of Markov counting process with frequent zeros[J]. Quality and reliability engineering international, 2019, 35(7): 2371-2394. DOI: 10.1002/qre.2519