A high-precision time-frequency synthesis and time keeping method
-
摘要: 在现代信息化平台建设中,时频系统为平台提供统一的时频基准,其守时性能是平台各组成部分能否高效联动、稳定工作的关键因素. 通过对频率基准源优选、多钟联合时频综合处理技术的分析和研究,提出了一种高精度时频综合及守时方法,设计了一种高精度时频综合及守时系统. 通过优选铷原子钟作为频率基准源、基于多个铷原子钟的原子时综合和驾驭、同类源实时互比选择出最优主钟和备钟,提升系统守时性能并开展了与传统方法的比对试验,验证了该方法的可行性和有效性.Abstract: In the construction of modern information platform, the time-frequency system provides a unified time-frequency reference for the platform, and its time keeping performance is the key factor for the efficient linkage and stable work of all components of the platform. Through the analysis and research of frequency reference source optimization and multi-clock integrated time-frequency processing technology, a high-precision time-frequency synthesis and time keeping method is proposed, and a high-precision time-frequency synthesis and time keeping system is designed, through selecting rubidium atomic clock as frequency reference source, atomic time synthesis and control based on multiple rubidium atomic clocks, and real-time cross-comparison of similar sources to select the optimal master clock and the backup master clock, to improve the system's time keeping performance. The feasibility and effectiveness of this method are verified by comparison experiments with the traditional method.
-
表 1 恒温晶振和铷原子钟性能比较
项目 铷原子钟 恒温晶振 备注 频率准确度 <5×1011 <1×107 关键指标 频率稳定度 <3×1011/1 s <3×1011/1 s 频率漂移 <5×1012 <5×1010 关键指标 工作温度 −40~+60 ℃ −40~+60 ℃ 温度特性 <5×1010 <2×108 关键指标 功耗 ≤7 W@12 V ≤2 W@5 V - 体积 约70 mm×
70 mm×30 mm约25 mm×
25 mm×15 mm- 价格 10 000~25 000元 1 000~10 000元 - -
[1] 宋会杰, 董绍武, 王翔, 等. 原子钟噪声变化时改进的Kalman滤波时间尺度算法[J]. 物理学报, 2020, 69(17): 170201. DOI: 10.7498/aps.69.20191920 [2] 赵学军. GNSS系统驯服铷钟基准研究[J]. 现代导航, 2021, 2(1): 5-8. DOI: 10.3969/j.issn.1674-7976.2021.01.002 [3] 王小雄. 卫星导航定位系统时间同步技术原理分析[J]. 信息通信, 2017, 1(2): 59-61. [4] 霍海强, 王敬, 赵岩. 一种授时守时板卡设计及实现[J]. 计算机与网络, 2021, 47(16): 60-63. DOI: 10.3969/j.issn.1008-1739.2021.16.052 [5] 王军, 王磊, 何昕. 基于FPGA的导航卫星失联下高精度守时方法研究[J]. 电子器件, 2016, 39(1): 140-143. DOI: 10.3969/j.issn.1005-9490.2016.01.028 [6] 翟浩, 廉吉庆. 原子钟性能对卫星导航系统定位精度的影响分析[J]. 导航定位与授时, 2021, 8(5): 118-123. [7] 杨玉婷, 刘晨帆, 蔺玉亭, 等. 我国守时系统发展现状与性能分析[J]. 自动化仪表, 2021, 42(7): 93-97,102. DOI: 10.16086/j.cnki.issn1000-0380.2020060049 [8] 迟华山, 张磊, 迟文波, 等. 基于GPS/北斗共视技术的铷钟驯服方法[J]. 计算机测量与控制, 2017, 25(7): 306-308. [9] 刘勇军, 项俊骐, 胡俊强, 等. 一种高性能小型化铷钟的研制[J]. 导航定位与授时, 2017, 4(1): 72-76. [10] 李敏, 赵金贤, 范建军, 等. 机动时频系统时间保持技术研究[J]. 现代导航, 2021, 2(1): 13-17. DOI: 10.3969/j.issn.1674-7976.2021.01.004 [11] 王莉萍, 徐亮. 时频计量体系守时系统与原子时算法[J]. 上海计量测试, 2017, 44(5): 33-35,41. DOI: 10.3969/j.issn.1673-2235.2017.05.010 [12] 田社平, 韩韬, 蔡萍, 等. 基于原子频标的守时与远程时间比对虚拟实验设计与应用[J]. 实验室研究与探索, 2021, 40(8): 109-113. [13] 刘阳, 彭竞, 龚航, 等. 基于频漂校准的氢钟铯钟联合守时研究[J]. 全球定位系统, 2019, 44(4): 1-7. [14] 于航, 张磊, 宋文霞, 等. 一种原子钟组加权的优化策略[J]. 计量学报, 2022, 43(4): 536-541. DOI: 10.3969/j.issn.1000-1158.2022.04.16 [15] 张守中, 赵瑞清. 一种基于铷原子钟的频率基准源冗余设计方案浅析[J]. 数字技术与应用, 2019, 37(3): 181-182. [16] 王龙, 贾小林, 阮仁桂, 等. 几种原子时算法的数学原理分析[C]//第十三届中国卫星导航年会论文集—S05时间频率与精密授时, 2022: 16-20. [17] 王锐, 袁静, 班亚, 等. 原子时算法分析与对比[J]. 计量学报, 2020, 41(3): 363-368. DOI: 10.3969/j.issn.1000-1158.2020.03.18 [18] GREENHALL C A. A Kalman filter clock ensemble algorithm that admits measure-ment noise[J]. Metrologia, 2006, 43(4): 311-321. DOI: 10.1088/0026-1394/44/6/008 [19] 惠恬. 铯原子钟数据噪声处理及时间尺度算法研究[D]. 西安: 西安科技大学, 2021: 6-16. [20] 朱江淼, 陈烨, 高源, 等. 原子钟钟差预测不确定度的建模与分析[J]. 计量学报, 2019, 40(4): 714-720. DOI: 10.3969/j.issn.1000-1158.2019.04.28 [21] 霍强. 国家授时中心在时间尺度算法研究方面取得新进展[N]. 陕西日报, 2021-07-26. [22] 曾德灵, 陈静, 郭芮君, 等. 钟组守时性能分析[J]. 计量科学与技术, 2022, 66(4): 114-119,62. [23] 班亚, 袁静, 刘洪静, 等. 提高守时系统可靠性的关键技术及方法研究[J]. 计量学报, 2019, 40(6A): 164-168. DOI: 10.3969/j.issn.1000-1158.2020.z1.35 [24] 杨帆, 陈学军, 张然. 原子时系统主备钟同步技术研究[J]. 宇航计测技术, 2020, 40(1): 29-32,45. DOI: 10.12060/j.issn.1000-7202.2020.01.05 [25] 宋会杰, 董绍武, 王翔, 等. 国产原子钟的噪声及守时性能研究[J]. 时间频率学报, 2022, 45(4): 270-278. DOI: 10.13875/j.issn.1674-0637.2022-04-0270-09 [26] 戴群雄, 郝青茹, 王铮, 等. 一种增强型PTP光纤级联精细时频同步方法[J]. 电子与信息学报, 2021, 43(5): 1465-1471. DOI: 10.11999/JEIT191057