A rapid PWV tomography technique based on water vapor vertical index distribution characteristics
-
摘要: GNSS水汽层析技术可以反演对流层水汽三维时空变化情况,但该技术比较复杂、运算量大,需要消耗一定的时间. 故本文提出了一种利用地基GNSS反演的大气可降水量(precipitable water vapor, PWV)结合水汽在垂直方向上的指数分布特性来计算大气水汽三维分布的快速层析方法. 该方法利用香港地区2022年8月的GNSS数据开展试验,与传统GNSS水汽层析方法进行对比. 试验结果表明:两种方法的层析解算结果与探空数据均具有良好的一致性. 虽然快速层析方法的解算结果在底层区域缺少一些水汽变化的细节信息,精度略逊于传统层析方法,但是在中、高层时精度会有所提升,层析解算结果良好. 而且本文提出的快速层析方法无需构建和解算复杂的层析方程组,可以在大量GNSS测站参与水汽层析时减少计算复杂度,提升运算能力,同时可以更快地得到任意高度层的水汽密度,是一种简便、高效的层析方法.
-
关键词:
- GNSS /
- 大气可降水量(PWV) /
- 水汽层析 /
- 水汽密度 /
- 垂直分层
Abstract: Global navigation satellite system (GNSS) water vapor tomography technique can be used to retrieve the three-dimensional spatiotemporal variation of the atmospheric water vapor, but this technique is complicated, which requires a large number of computation and a certain amount of time. Therefore, this paper proposes a rapid tomography technique that uses the precipitable water vapor (PWV) from ground-based GNSS inversion and combines with the exponential distribution characteristics of water vapor in the vertical direction to calculate the three-dimensional distribution of atmospheric water vapor. In this paper, the GNSS data over Hong Kong area, China in August 2022 are used to carry out the experiment in which the rapid tomography technique are compared with the traditional GNSS tomography technique. The experimental results show that the two methods have good agreement with the radiosonde data. Due to lacking of some details of water vapor change in the bottom region, the accuracy of the rapid tomography technique in such region is slightly lower than that of the traditional tomography technique. However, the accuracy of the rapid tomography technique is improved in the middle and high levels, and the results of the tomography technique solution are good. In addition, the rapid tomography technique proposed in this paper does not need to construct and solve complex tomography equations, and can reduce the computational complexity and improve the computing power when a large number of GNSS stations participate in water vapor tomography technique. At the same time, the water vapor density at any level can be obtained rapidly, which is a simple and efficient tomography technique. -
表 1 GAMIT 10.71解算策略
参数名称 参数设置 数据采样间隔/s 300 时间分辨率/h 2 截止高度角/(°) 10 映射函数模型 VMF1 海潮改正模型 otl_FES2004 对流层延迟模型 Saastamoinen 电离层模型 NONE IGS辅助站 BAKO、CHAN和GUAM 表 2 两种方案层析解算结果的误差对比
mm 方案 Bias MAE IQR RMSE 方案一 0.86 1.26 2.13 1.74 方案二 −0.88 1.30 1.25 1.93 -
[1] 张斌, 薛根元, 张双成. 基于IGS超级跟踪站近实时解算浙江地基GPS大气可降水量[J]. 热带气象学报, 2009, 25(2): 222-226. [2] FLORES A, RUFFINI G, RIUS A, et al. 4D tropospheric tomography using GPS slant wet delays[J]. Annales geophysicae, 1999, 18(95): 223-234. DOI: 10.1007/s00585-000-0223-7 [3] HIRAHARA K. Local GPS tropospheric tomography[J]. Earth, planets and space, 2000, 52(11): 935-939. DOI: 10.1186/BF03352308 [4] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10): 1408-1420. [5] 李得宴, 杨维芳, 高志钰, 等. 不同饱和水汽压模型对GNSS反演可降水量的影响分析[J]. 全球定位系统, 2020, 45(6): 55-63. [6] SEKO H, SHIMADA S, NAKAMURA H, et al. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front[J]. Earth, planets and space, 2000, 52(11): 927-933. DOI: 10.1186/BF03352307 [7] TROLLER M, BÜRKI B, COCARD M, et al. 3-D refractivity field from GPS double difference tomography[J]. Geophysical research letters, 2002, 29(24): 2-1-2-4. DOI: 10.1029/2002GL015982 [8] TROLLER M, GEIGER A, BROCKMANN E, et al. Determination of the spatial and temporal variation of tropospheric water vapor using CGPS networks[J]. Geophysical journal international, 2006, 167(2): 509-520. DOI: 10.1111/J.1365-246X.2006.03101.X [9] PERLER D, GEIGER A, HURTER F, et al. 4D GPS water vapor tomography: new parameterized approaches[J]. Journal of geodesy, 2011, 85(8): 539-550. DOI: 10.1007/S00190-011-0454-2 [10] DING N, YAN X R, ZHANG S B, et al. Node-based optimization of GNSS tomography with a minimum bounding box algorithm[J]. Remote sensing, 2020, 12(17): 2744. DOI: 10.3390/rs12172744 [11] SÁ A, ROHM W, FERNANDES R M, et al. Approach to leveraging real-time GNSS tomography usage[J]. Journal of geodesy, 2021, 95(1): 1-21. DOI: 10.1007/s00190-020-01464-7 [12] 肖文健, 陈志斌, 马东玺, 等. 光纤陀螺基于本征模态函数筛选的阈值滤波算法[J]. 中国惯性技术学报, 2015, 23(5): 685-689. [13] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9): 1179-1187. [14] 万蓉, 郑国光, 于胜杰, 等. 基于观测约束的地基GPS三维水汽层析技术研究[J]. 气象学报, 2013, 71(2): 318-331. [15] WANG H, DING N, ZHANG W Y, et al. An adaptive non-uniform vertical stratification method for troposphere water vapor tomography[J]. Remote sensing, 2021, 13(19): 3818. DOI: 10.3390/rs13193818 [16] TOMASI C. Determination of the total precipitable water by varying the intercept in reitan’s relationship[J]. Journal of applied meterology, 1981, 20(9): 1058-1069. DOI: 10.1175/1520-0450(1981)020<1058:DOTTPW>2.0.CO;2 [17] 李超, 魏合理, 王珍珠, 等. 合肥地区大气水汽标高变化特征的统计研究[J]. 大气与环境光学学报, 2008, 3(2): 115-120. [18] 马朋序, 丁楠, 张书毕. 加权距离排序的水汽层析算法[J]. 测绘科学, 2019, 44(10): 109-116. [19] HA J, PARK K D, KIM K, et al. Comparison of atmospheric water vapor profiles obtained by GPS, MWR, and radiosonde[J]. Asia-pacific journal of atmospheric sciences, 2010, 46(3): 233-241. DOI: 10.1007/s13143-010-1012-1 [20] BABATUNDE A, SCHULZ J. Analysis of water vapor over nigeria using radiosonde and satellite data[J]. Journal of applied meteorology and climatology, 2012, 51(10): 1855-1866. DOI: 10.1175/JAMC-D-11-0119.1 [21] 陈许霞, 季民, 宁方志. 基于GIS的格点精细化预报插值方法的研究[J]. 测绘与空间地理信息, 2016, 39(10): 69-71,74,78.