Pseudorange positioning model considering DCB correction and kinematic performance evaluation.
-
摘要: 为评估多系统海上伪距单点定位(single point positioning,SPP)性能,顾及不同导航系统广播星历的卫星钟差基准差异,推导了多系统单频和双频消电离层(ionosphere-free,IF)组合SPP模型. 采用无人船实测的近海多系统GNSS动态观测数据评估了GPS、GPS/Galileo、GPS/BDS和GPS/Galileo/BDS的单频和IF组合SPP定位精度. 结果表明:相较于单一GPS,多系统的SPP定位性能更优,三系统IF组合SPP的平面精度优于0.5 m,天顶方向精度优于0.6 m;相比于多系统单频SPP,多系统IF组合SPP在平面和天向精度提高约1.0 m和1.3 m,基于IF组合的SPP具有更优的定位性能.
-
关键词:
- 多系统 /
- 伪距单点定位(SPP) /
- 消电离层(IF)组合 /
- 无人船 /
- 动态定位
Abstract: In order to evaluate the performance of maritime single point positioning (SPP) performance, taking into account the fact that the broadcast satellite clock correction corresponds to the ionosphere-free (IF) combination or single-frequency B3, a multi-system single-frequency and dual-frequency IF SPP model is derived. The IF and single-frequency SPP positioning accuracy of GPS, GPS/Galileo, GPS/BDS and GPS/Galileo/BDS were evaluated using a set of offshore multi-system GNSS data measured by the unmanned surface vehicle (USV). The results show that compared with the GPS-only system, the SPP positioning performance after the system combination is improved with the plane accuracy of the GPS/Galileo/BDS IF SPP being better than 0.5 m, and the vertical direction accuracy being better than 0.6 m. Compared with the single-frequency SPP, the IF SPP has an improved positioning accuracy of about 1.0 m and 1.3 m in the horizontal and vertical directions, and the IF SPP has better positioning performance. -
表 1 卫星平均SNR和MP统计
系统 频率 SNR/dB MP/m GPS P1 43.2 0.13 P2 42.5 0.11 Galileo E1 39.8 0.15 E5a 44.0 0.18 BDS B1I 43.7 0.07 B3I 44.1 0.06 -
[1] 杨元喜, 刘利, 李金龙, 等. 北斗特色服务及性能分析(英文)[J]. 科学通报(英文版), 2021, 66(20): 2135-2143. [2] KATSIGIANNI G, LOYER S, PEROSANZ F. PPP and PPP-AR kinematic post-processed performance of GPS-only, Galileo-only and multi-GNSS[J]. Remote sensing, 2019, 11(21): 2477. DOI: 10.3390/rs11212477 [3] 柴洪洲, 潘宗鹏, 崔岳. 基于多系统组合的PPP模糊度快速固定研究[J]. 海洋测绘, 2017, 37(1): 9-13. [4] CHEN J, ZHAO X W, LIU C, et al. Evaluating the latest performance of precise point positioning in multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS[J]. The journal of navigation, 2021, 74(1): 247-267. DOI: 10.1017/S0373463320000508 [5] 黄申芹, 管庆林, 樊春明, 等. 低成本GNSS接收机机载单点动态定位精度评估[J]. 导航定位学报, 2022, 10(1): 97-102. [6] 吴有龙, 陈帅. 典型复杂城市环境下GNSS单点定位方法及性能分析[J]. 金陵科技学院学报, 2021, 37(4): 14-20. [7] 王颖喆, 胡捷, 陶贤露, 等. Android智能手机双频GNSS伪距差分动态定位性能分析[J]. 导航定位与授时, 2021, 8(5): 103-110. [8] 白腾飞, 柴洪洲, 王敏, 等. 智能手机海上GNSS数据质量分析与动态定位评估[J]. 海洋测绘, 2022, 42(2): 42-47. [9] YIN X, CHAI H Z, XU W, et al. Realization and evaluation of real-time uncombined GPS/Galileo/ BDS PPP-RTK in the offshore area of China’s Bohai sea[J]. Marine geodesy, 2022(45): 577-594. DOI: 10.1080/01490419.2022.2057628 [10] TEUNISSEN P G, MONTENBRUCK O. Springer handbook of Global Navigation Satellite Systems[M]. Springer, 2017. [11] China Satellite Navigation Office. BeiDou Navigation Satellite System signal in space interface control document-open service signal(v. 2.0)[S]. 2013. [12] CHEN J P, ZHANG Y Z, WANG J G, et al. A simplified and unified model of multi-GNSS precise point positioning[J]. Advances in space research, 2015, 55(1): 125-134. DOI: 10.1016/j.asr.2014.10.002 [13] 王进, 杨元喜, 张勤, 等. 多模GNSS融合PPP系统间偏差特性分析[J]. 武汉大学学报(信息科学版), 2019, 44(4): 475-481. [14] HONG J, TU R, GAO Y P, et al. Characteristics of inter-system biases in Multi-GNSS with precise point positioning[J]. Advances in space research, 2019, 63(12): 3777-3794. DOI: 10.1016/j.asr.2019.02.037 [15] 王含宇, 宋淑丽, 周伟莉, 等. GNSS偏差及其研究进展[J]. 天文学进展, 2021, 39(1): 49-62. [16] ZHAO J, AN J C, WANG Z M, et al. Signal quality and positioning performance of GPS/BDS-3/GLONASS /Galileo in polar regions[J]. Advances in space research, 2022, 69(6): 2541-2554. DOI: 10.1016/j.asr.2021.12.032 [17] GUAN X G, CHAI H Z, XIAO G R, et al. Signal quality analysis and quality check of BDS3 precise point positioning in the Arctic Ocean[J]. Acta oceanologica sinica, 2022, 41(2): 166-179. DOI: 10.1007/s13131-021-1704-7